IEEE Trans Med Imaging. 2020 Dec;39(12):4137-4149. doi: 10.1109/TMI.2020.3013825. Epub 2020 Nov 30.
Effective fusion of structural magnetic resonance imaging (sMRI) and functional magnetic resonance imaging (fMRI) data has the potential to boost the accuracy of infant age prediction thanks to the complementary information provided by different imaging modalities. However, functional connectivity measured by fMRI during infancy is largely immature and noisy compared to the morphological features from sMRI, thus making the sMRI and fMRI fusion for infant brain analysis extremely challenging. With the conventional multimodal fusion strategies, adding fMRI data for age prediction has a high risk of introducing more noises than useful features, which would lead to reduced accuracy than that merely using sMRI data. To address this issue, we develop a novel model termed as disentangled-multimodal adversarial autoencoder (DMM-AAE) for infant age prediction based on multimodal brain MRI. Specifically, we disentangle the latent variables of autoencoder into common and specific codes to represent the shared and complementary information among modalities, respectively. Then, cross-reconstruction requirement and common-specific distance ratio loss are designed as regularizations to ensure the effectiveness and thoroughness of the disentanglement. By arranging relatively independent autoencoders to separate the modalities and employing disentanglement under cross-reconstruction requirement to integrate them, our DMM-AAE method effectively restrains the possible interference cross modalities, while realizing effective information fusion. Taking advantage of the latent variable disentanglement, a new strategy is further proposed and embedded into DMM-AAE to address the issue of incompleteness of the multimodal neuroimages, which can also be used as an independent algorithm for missing modality imputation. By taking six types of cortical morphometric features from sMRI and brain functional connectivity from fMRI as predictors, the superiority of the proposed DMM-AAE is validated on infant age (35 to 848 days after birth) prediction using incomplete multimodal neuroimages. The mean absolute error of the prediction based on DMM-AAE reaches 37.6 days, outperforming state-of-the-art methods. Generally, our proposed DMM-AAE can serve as a promising model for prediction with multimodal data.
有效的结构磁共振成像 (sMRI) 和功能磁共振成像 (fMRI) 数据融合有望通过不同成像模式提供的互补信息提高婴儿年龄预测的准确性。然而,与 sMRI 的形态特征相比,婴儿期 fMRI 测量的功能连接在很大程度上不成熟且不稳定,因此 sMRI 和 fMRI 融合进行婴儿大脑分析极具挑战性。在传统的多模态融合策略中,添加 fMRI 数据进行年龄预测存在引入更多噪声而不是有用特征的高风险,这将导致准确性降低,不如仅使用 sMRI 数据。为了解决这个问题,我们开发了一种新的模型,称为基于多模态脑 MRI 的解缠多模态对抗自动编码器 (DMM-AAE),用于婴儿年龄预测。具体来说,我们将自动编码器的潜在变量解缠为共同和特定代码,分别表示模态之间的共享和互补信息。然后,设计了交叉重建要求和共同-特定距离比损失作为正则化项,以确保解缠的有效性和彻底性。通过安排相对独立的自动编码器来分离模态,并利用交叉重建要求下的解缠来集成它们,我们的 DMM-AAE 方法有效地抑制了可能的模态间干扰,同时实现了有效的信息融合。利用潜在变量解缠,我们进一步提出并嵌入到 DMM-AAE 中一种新策略来解决多模态神经图像不完整的问题,该策略也可作为缺失模态插补的独立算法。我们采用来自 sMRI 的六种皮质形态学特征和 fMRI 的脑功能连接作为预测因子,使用不完整的多模态神经图像对婴儿年龄 (出生后 35 至 848 天) 进行预测,验证了所提出的 DMM-AAE 的优越性。基于 DMM-AAE 的预测的平均绝对误差达到 37.6 天,优于最新方法。总的来说,我们提出的 DMM-AAE 可以作为一种有前途的多模态数据预测模型。