Suppr超能文献

彩色融合:生成式多模态神经影像数据融合为精神分裂症提供了多方面的见解。

Chromatic fusion: generative multimodal neuroimaging data fusion provides multi-informed insights into schizophrenia.

作者信息

Geenjaar Eloy P T, Lewis Noah L, Fedorov Alex, Wu Lei, Ford Judith M, Preda Adrian, Plis Sergey M, Calhoun Vince D

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, 30303, USA.

出版信息

medRxiv. 2023 May 26:2023.05.18.23290184. doi: 10.1101/2023.05.18.23290184.

Abstract

This work proposes a novel generative multimodal approach to jointly analyze multimodal data while linking the multimodal information to colors. By linking colors to private and shared information from modalities, we introduce chromatic fusion, a framework that allows for intuitively interpreting multimodal data. We test our framework on structural, functional, and diffusion modality pairs. In this framework, we use a multimodal variational autoencoder to learn separate latent subspaces; a private space for each modality, and a shared space between both modalities. These subspaces are then used to cluster subjects, and colored based on their distance from the variational prior, to obtain meta-chromatic patterns (MCPs). Each subspace corresponds to a different color, red is the private space of the first modality, green is the shared space, and blue is the private space of the second modality. We further analyze the most schizophrenia-enriched MCPs for each modality pair and find that distinct schizophrenia subgroups are captured by schizophrenia-enriched MCPs for different modality pairs, emphasizing schizophrenia's heterogeneity. For the FA-sFNC, sMRI-ICA, and sMRI-ICA MCPs, we generally find decreased fractional corpus callosum anisotropy and decreased spatial ICA map and voxel-based morphometry strength in the superior frontal lobe for schizophrenia patients. To additionally highlight the importance of the shared space between modalities, we perform a robustness analysis of the latent dimensions in the shared space across folds. These robust latent dimensions are subsequently correlated with schizophrenia to reveal that for each modality pair, multiple shared latent dimensions strongly correlate with schizophrenia. In particular, for FA-sFNC and sMRI-sFNC shared latent dimensions, we respectively observe a reduction in the modularity of the functional connectivity and a decrease in visual-sensorimotor connectivity for schizophrenia patients. The reduction in modularity couples with increased fractional anisotropy in the left part of the cerebellum dorsally. The reduction in the visual-sensorimotor connectivity couples with a reduction in the voxel-based morphometry generally but increased dorsal cerebellum voxel-based morphometry. Since the modalities are trained jointly, we can also use the shared space to try and reconstruct one modality from the other. We show that cross-reconstruction is possible with our network and is generally much better than depending on the variational prior. In sum, we introduce a powerful new multimodal neuroimaging framework designed to provide a rich and intuitive understanding of the data that we hope challenges the reader to think differently about how modalities interact.

摘要

这项工作提出了一种新颖的生成式多模态方法,用于联合分析多模态数据,同时将多模态信息与颜色联系起来。通过将颜色与各模态的私有信息和共享信息相联系,我们引入了色彩融合,这是一个能够直观解释多模态数据的框架。我们在结构、功能和扩散模态对上测试了我们的框架。在这个框架中,我们使用多模态变分自编码器来学习单独的潜在子空间:每个模态一个私有空间,以及两个模态之间的一个共享空间。然后利用这些子空间对受试者进行聚类,并根据它们与变分先验的距离进行着色,以获得元色彩模式(MCPs)。每个子空间对应一种不同的颜色,红色是第一种模态的私有空间,绿色是共享空间,蓝色是第二种模态的私有空间。我们进一步分析了每个模态对中最富集精神分裂症的MCPs,发现不同模态对中富集精神分裂症的MCPs捕获了不同的精神分裂症亚组,强调了精神分裂症的异质性。对于FA-sFNC、sMRI-ICA和sMRI-ICA的MCPs,我们通常发现精神分裂症患者的胼胝体分数各向异性降低,以及上额叶的空间ICA图谱和基于体素的形态测量强度降低。为了进一步突出模态之间共享空间的重要性,我们对跨折叠的共享空间中的潜在维度进行了稳健性分析。这些稳健的潜在维度随后与精神分裂症相关联,以揭示对于每个模态对,多个共享潜在维度与精神分裂症强烈相关。特别是,对于FA-sFNC和sMRI-sFNC的共享潜在维度,我们分别观察到精神分裂症患者的功能连接模块化程度降低以及视觉-感觉运动连接减少。模块化程度的降低与小脑背侧左部的分数各向异性增加相关。视觉-感觉运动连接的减少通常与基于体素的形态测量减少相关,但与小脑背侧基于体素的形态测量增加相关。由于这些模态是联合训练的,我们还可以使用共享空间尝试从另一个模态重建一个模态。我们表明,我们的网络能够进行交叉重建,并且通常比依赖变分先验要好得多。总之,我们引入了一个强大的新多模态神经成像框架,旨在提供对数据丰富而直观的理解,我们希望这能促使读者以不同的方式思考模态之间的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/547d/10246163/8389a33d19d4/nihpp-2023.05.18.23290184v1-f0008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验