IEEE Rev Biomed Eng. 2021;14:256-269. doi: 10.1109/RBME.2020.3005448. Epub 2021 Jan 22.
The arterial wall is characterised by a complex microstructure that impacts the mechanical properties of the vascular tissue. The main components consist of collagen and elastin fibres, proteoglycans, Vascular Smooth Muscle Cells (VSMCs) and ground matrix. While VSMCs play a key role in the active mechanical response of arteries, collagen and elastin determine the passive mechanics. Several experimental methods have been designed to investigate the role of these structural proteins in determining the passive mechanics of the arterial wall. Microscopy imaging of load-free or fixed samples provides useful information on the structure-function coupling of the vascular tissue, and mechanical testing provides information on the mechanical role of collagen and elastin networks. However, when these techniques are used separately, they fail to provide a full picture of the arterial micromechanics. More recently, advances in imaging techniques have allowed combining both methods, thus dynamically imaging the sample while loaded in a pseudo-physiological way, and overcoming the limitation of using either of the two methods separately. The present review aims at describing the techniques currently available to researchers for the investigation of the arterial wall micromechanics. This review also aims to elucidate the current understanding of arterial mechanics and identify some research gaps.
动脉壁的特点是具有复杂的微观结构,这会影响血管组织的机械性能。主要组成部分包括胶原纤维和弹性纤维、蛋白聚糖、血管平滑肌细胞(VSMCs)和基质。虽然 VSMCs 在动脉的主动机械响应中起着关键作用,但胶原纤维和弹性纤维决定了被动力学特性。已经设计了几种实验方法来研究这些结构蛋白在确定动脉壁被动力学中的作用。对无负载或固定样本进行显微镜成像,可以提供有关血管组织结构-功能耦联的有用信息,而机械测试则提供有关胶原纤维和弹性纤维网络的机械作用的信息。然而,当这些技术单独使用时,它们无法全面描绘动脉的微观力学。最近,成像技术的进步使得这两种方法能够结合使用,从而可以在伪生理方式加载的情况下对样本进行动态成像,并克服了单独使用这两种方法中的任何一种的局限性。本综述旨在描述目前研究人员可用于研究动脉壁微观力学的技术。本综述还旨在阐明目前对动脉力学的理解,并确定一些研究空白。