Suppr超能文献

关于行动结果的信息会对自主选择和强制选择的学习产生不同的影响。

Information about action outcomes differentially affects learning from self-determined versus imposed choices.

机构信息

Institut Jean Nicod, Département d'Études Cognitives, École Normale Supérieure, EHESS, CNRS, PSL University, Paris, France.

Laboratoire de Neurosciences Cognitives et Computationnelles, Département d'Études Cognitives, École Normale Supérieure, INSERM, PSL University, Paris, France.

出版信息

Nat Hum Behav. 2020 Oct;4(10):1067-1079. doi: 10.1038/s41562-020-0919-5. Epub 2020 Aug 3.

Abstract

The valence of new information influences learning rates in humans: good news tends to receive more weight than bad news. We investigated this learning bias in four experiments, by systematically manipulating the source of required action (free versus forced choices), outcome contingencies (low versus high reward) and motor requirements (go versus no-go choices). Analysis of model-estimated learning rates showed that the confirmation bias in learning rates was specific to free choices, but was independent of outcome contingencies. The bias was also unaffected by the motor requirements, thus suggesting that it operates in the representational space of decisions, rather than motoric actions. Finally, model simulations revealed that learning rates estimated from the choice-confirmation model had the effect of maximizing performance across low- and high-reward environments. We therefore suggest that choice-confirmation bias may be adaptive for efficient learning of action-outcome contingencies, above and beyond fostering person-level dispositions such as self-esteem.

摘要

新信息的效价会影响人类的学习速度

好消息往往比坏消息更受重视。我们通过系统地操纵所需行动的来源(自由选择与强制选择)、结果关联(低奖励与高奖励)和运动要求(是选择与否选择),在四个实验中研究了这种学习偏见。通过对模型估计的学习率进行分析,我们发现学习率中的确认偏见特定于自由选择,但与结果关联无关。这种偏见也不受运动要求的影响,因此表明它在决策的表示空间中起作用,而不是运动动作。最后,模型模拟表明,从选择确认模型估计的学习率具有在低奖励和高奖励环境中最大化性能的效果。因此,我们认为,选择确认偏差可能有助于有效地学习行为-结果关联,而不仅仅是培养自尊心等个人特质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验