Ma Jun, Denisov Sergey, Adhikary Amitava, Mostafavi Mehran
Professeur à l'Université de Nanjin en Chine (Aeronautics et Astronautics). Il a effectué sa thèse et une partie de son post-doctorat au Laboratoire de Chimie Physique.
Chargé de recherche au CNRS au Laboratoire de Chimie Physique (UMR 8000) à Orsay, développant les méthodes spectroscopiques sur ELYSE.
Actual Chim. 2020 Apr;450:13-18.
DNA damage caused by the dissociative electron attachment (DEA) has been well-studied in the gas and solid phases. However, understanding of this process at the fundamental level in solution is still a challenge. The electrons, after losing their kinetic energy via ionization and excitation events, are thermalized and undergo a multistep hydration process with a time constant of ca. ≤1 ps, to becoming fully trapped as a hydrated or solvated electron (e or e ). Prior to the formation of e , the electron exists in its presolvated (or prehydrated) state (e ) with no kinetic energy. We used picosecond pulse radiolysis to generate electrons in water or in liquid diethylene glycol (DEG) to observe the dynamics of capture of these electrons by DNA/RNA bases, nucleosides, and nucleotides. Contrary to the hypotheses in the literature that the presolvated electrons (e ) are captured well by the DNA-nucleosides/tides and the transient negative ions (TNIs) cause strand breaks, we first show that the quasi-free electrons with kinetic energy (e ) or e cannot be captured by guanine and adenine at very long distances in aqueous solutions with concentrations lower than 50 mM. However, the observation of a substantial decrease in the initial yield of e as a function of nucleoside/nucleotide concentrations accompanied by the formation of the nucleotide anion radicals provides direct evidence of an ultrafast step involving radiation-produced electron-mediated DNA damage via DEA. Transient signal analysis suggests that the dissociation channel of TNIs in nucleotide solutions is not even probable up to 0.25 M. On the other hand, in diethylene glycol, we demonstrate that unlike e and e , e effectively attaches itself to the RNA-nucleoside, ribothymidine, forming the TNI in the excited state (TNI*) that undergoes the N1-C1' glycosidic bond dissociation. Thanks to DEA, this process induced by e , in fact, leads to an oxidation of the parent molecule similar to the hydroxyl radical (OH) leading to the same glycosidic bond (N1-C1') cleavage.
由离解电子附着(DEA)引起的DNA损伤在气相和固相已得到充分研究。然而,在溶液中从基础层面理解这一过程仍是一项挑战。电子通过电离和激发事件失去动能后,会热化并经历一个时间常数约为≤1皮秒的多步水合过程,最终作为水合电子或溶剂化电子(e⁻或eₛ)被完全捕获。在形成e⁻之前,电子以其预溶剂化(或预水合)状态(e₀)存在,没有动能。我们使用皮秒脉冲辐解在水或液态二甘醇(DEG)中产生电子,以观察DNA/RNA碱基、核苷和核苷酸捕获这些电子的动力学过程。与文献中的假设相反,即预溶剂化电子(e₀)能被DNA - 核苷/核苷酸很好地捕获且瞬态负离子(TNIs)会导致链断裂,我们首次表明,在浓度低于50 mM的水溶液中,具有动能的准自由电子(e⁺或e₀⁺)在很长距离下不能被鸟嘌呤和腺嘌呤捕获。然而,观察到e⁻的初始产率随核苷/核苷酸浓度显著降低,并伴有核苷酸阴离子自由基的形成,这提供了直接证据,证明存在一个超快步骤,涉及通过DEA由辐射产生的电子介导的DNA损伤。瞬态信号分析表明,在高达0.25 M的核苷酸溶液中,TNIs的解离通道甚至不太可能发生。另一方面,在二甘醇中,我们证明与e⁺和e₀⁺不同,e₀⁺有效地附着于RNA - 核苷、核糖胸苷,形成处于激发态的TNI(TNI*),该TNI*会发生N1 - C1'糖苷键解离。由于DEA,由e₀⁺诱导的这一过程实际上导致母体分子发生类似于羟基自由基(OH)的氧化,从而导致相同的糖苷键(N1 - C1')断裂。