Park Samuel D, Thurman Samuel T, Lindle James R, Watnik Abbie T, Lebow Paul S, Bratcher Andrew T
J Opt Soc Am A Opt Image Sci Vis. 2020 Aug 1;37(8):1276-1281. doi: 10.1364/JOSAA.392645.
We present a new approach to coherent averaging in digital holography using singular value decomposition (SVD). Digital holography enables the extraction of phase information from intensity measurements. For this reason, SVD can be used to statistically determine the orthogonal vectors that align the complex-valued measurements from multiple frames and group common modes accounting for constant phase shift terms. The SVD approach enables the separation of multiple signals, which can be applied to remove undesired artifacts such as scatter in retrieved images. The advantages of the SVD approach are demonstrated here in experiments through fog-degraded holograms with spatially incoherent and coherent scatter.
我们提出了一种使用奇异值分解(SVD)在数字全息术中进行相干平均的新方法。数字全息术能够从强度测量中提取相位信息。因此,SVD可用于统计确定使来自多个帧的复数值测量对齐的正交向量,并对考虑恒定相移项的共同模式进行分组。SVD方法能够分离多个信号,可用于去除诸如检索图像中的散射等不需要的伪像。本文通过具有空间非相干和相干散射的雾退化全息图在实验中证明了SVD方法的优势。