Robotics And Mechatronics group (RAM), University of Twente, 7500 AE Enschede, The Netherlands.
Biomedical Signals and Systems (BSS), University of Twente, 7500 AE Enschede, The Netherlands.
Sensors (Basel). 2020 Jul 31;20(15):4292. doi: 10.3390/s20154292.
3D printing of soft EMG sensing structures enables the creation of personalized sensing structures that can be potentially integrated in prosthetic, assistive and other devices. We developed and characterized flexible carbon-black doped TPU-based sEMG sensing structures. The structures are directly 3D-printed without the need for an additional post-processing step using a low-cost, consumer grade multi-material FDM printer. A comparison between the gold standard Ag/AgCl gel electrodes and the 3D-printed EMG electrodes with a comparable contact area shows that there is no significant difference in the EMG signals' amplitude. The sensors are capable of distinguishing a variable level of muscle activity of the biceps brachii. Furthermore, as a proof of principle, sEMG data of a 3D-printed 8-electrode band are analyzed using a patten recognition algorithm to recognize hand gestures. This work shows that 3D-printed sEMG electrodes have great potential in practical applications.
3D 打印软 EMG 传感结构可实现个性化传感结构的创建,这些结构可潜在集成于假肢、辅助和其他设备中。我们开发并表征了基于 TPU 的柔性碳黑掺杂 sEMG 传感结构。这些结构可直接使用低成本、消费级多材料 FDM 打印机进行 3D 打印,无需额外的后处理步骤。金标准 Ag/AgCl 凝胶电极与具有可比接触面积的 3D 打印 EMG 电极之间的比较表明,EMG 信号幅度没有显著差异。传感器能够区分肱二头肌的不同水平的肌肉活动。此外,作为原理验证,使用模式识别算法对手臂手势的 3D 打印 8 电极带的 sEMG 数据进行了分析。这项工作表明,3D 打印的 sEMG 电极在实际应用中有很大的潜力。