Instituto de Química, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, 74690-900, Brazil.
Instituto Nacional de Ciência E Tecnologia de Bioanalítica, Campinas, SP, 13084-971, Brazil.
Mikrochim Acta. 2022 May 28;189(6):235. doi: 10.1007/s00604-022-05323-4.
The 3D printing is described of a complete and portable system comprising a batch injection analysis (BIA) cell and an electrochemical platform with eight sensing electrodes. Both BIA and electrochemical cells were printed within 3.4 h using a multimaterial printer equipped with insulating, flexible, and conductive filaments at cost of ca. ~ U$ 1.2 per unit, and their integration was based on a threadable assembling without commercial component requirements. Printed electrodes were exposed to electrochemical/Fenton pre-treatments to improve the sensitivity. Scanning electron microscopy and electrochemical impedance spectroscopy measurements upon printed materials revealed high-fidelity 3D features (90 to 98%) and fast heterogeneous rate constants ((1.5 ± 0.1) × 10 cm s). Operational parameters of BIA cell were optimized using a redox probe composed of [Fe(CN)] under stirring and the best analytical performance was achieved using a dispensing rate of 9.0 µL s and an injection volume of 2.0 µL. The proof of concept of the printed device for bioanalytical applications was evaluated using adrenaline (ADR) as target analyte and its redox activities were carefully evaluated through different voltammetric techniques upon multiple 3D-printed electrodes. The coupling of BIA system with amperometric detection ensured fast responses with well-defined peak width related to the oxidation of ADR applying a potential of 0.4 V vs Ag. The fully 3D-printed system provided suitable analytical performance in terms of repeatability and reproducibility (RSD ≤ 6%), linear concentration range (5 to 40 µmol L; R = 0.99), limit of detection (0.61 µmol L), and high analytical frequency (494 ± 13 h). Lastly, artificial urine samples were spiked with ADR solutions at three different concentration levels and the obtained recovery values ranged from 87 to 118%, thus demonstrating potentiality for biological fluid analysis. Based on the analytical performance, the complete device fully printed through additive manufacturing technology emerges as powerful, inexpensive, and portable tool for electroanalytical applications involving biologically relevant compounds.
描述了一种完整且便携的系统,该系统包括批量注射分析(BIA)池和电化学平台,其中包含八个传感电极。使用配备有绝缘、柔性和导电长丝的多材料打印机,在 3.4 小时内即可打印出 BIA 和电化学池,其成本约为每个单元 1.2 美元,并且它们的集成是基于无需商业组件要求的可穿线组装。打印电极经过电化学/Fenton 预处理以提高灵敏度。对打印材料进行扫描电子显微镜和电化学阻抗谱测量,结果显示具有高保真度的 3D 特征(90 到 98%)和快速非均相速率常数((1.5 ± 0.1)×10 cm s)。在搅拌下使用由 [Fe(CN)]组成的氧化还原探针对 BIA 池的操作参数进行优化,并使用 9.0 µL s 的分配速率和 2.0 µL 的注入体积获得最佳的分析性能。通过使用肾上腺素(ADR)作为目标分析物来评估打印设备在生物分析应用中的概念验证,并且通过在多个 3D 打印电极上使用不同的伏安技术仔细评估了其氧化还原活性。BIA 系统与安培检测的耦合确保了快速响应,并且与 ADR 的氧化相关的定义明确的峰宽应用 0.4 V vs Ag 的电势。完全 3D 打印系统在重复性和重现性(RSD≤6%)、线性浓度范围(5 至 40 µmol L;R=0.99)、检测限(0.61 µmol L)和高分析频率(494±13 h)方面提供了合适的分析性能。最后,在三个不同浓度水平下向人工尿液样品中添加 ADR 溶液,得到的回收率范围为 87 至 118%,因此证明了该系统在生物体液分析方面的潜力。基于分析性能,完全通过增材制造技术打印的完整设备是一种强大、廉价且便携的工具,可用于涉及生物相关化合物的电分析应用。