Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
Mol Cell. 2020 Sep 17;79(6):917-933.e9. doi: 10.1016/j.molcel.2020.07.013. Epub 2020 Aug 4.
Despite key roles in sister chromatid cohesion and chromosome organization, the mechanism by which cohesin rings are loaded onto DNA is still unknown. Here we combine biochemical approaches and cryoelectron microscopy (cryo-EM) to visualize a cohesin loading intermediate in which DNA is locked between two gates that lead into the cohesin ring. Building on this structural framework, we design experiments to establish the order of events during cohesin loading. In an initial step, DNA traverses an N-terminal kleisin gate that is first opened upon ATP binding and then closed as the cohesin loader locks the DNA against the ATPase gate. ATP hydrolysis will lead to ATPase gate opening to complete DNA entry. Whether DNA loading is successful or results in loop extrusion might be dictated by a conserved kleisin N-terminal tail that guides the DNA through the kleisin gate. Our results establish the molecular basis for cohesin loading onto DNA.
尽管姐妹染色单体黏合和染色体组织中发挥着关键作用,但黏合蛋白环加载到 DNA 上的机制仍不清楚。在这里,我们结合生化方法和冷冻电镜(cryo-EM)来可视化黏合蛋白加载的中间产物,其中 DNA 被锁定在两个进入黏合蛋白环的门之间。在此结构框架的基础上,我们设计实验来确定黏合蛋白加载过程中的事件顺序。在初始步骤中,DNA 通过 N 端 kleisin 门,该门在 ATP 结合后首先打开,然后在黏合蛋白加载器将 DNA 锁定在 ATP 酶门上时关闭。ATP 水解将导致 ATP 酶门打开以完成 DNA 进入。DNA 加载是否成功或导致环挤出,可能由指导 DNA 通过 kleisin 门的保守 kleisin N 端尾巴决定。我们的结果确立了黏合蛋白加载到 DNA 上的分子基础。