Makarkin Mikhail, Bratashov Daniil
Biomedical Photoacoustics Lab, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia.
Micromachines (Basel). 2021 Dec 14;12(12):1558. doi: 10.3390/mi12121558.
In modern digital microscopy, deconvolution methods are widely used to eliminate a number of image defects and increase resolution. In this review, we have divided these methods into classical, deep learning-based, and optimization-based methods. The review describes the major architectures of neural networks, such as convolutional and generative adversarial networks, autoencoders, various forms of recurrent networks, and the attention mechanism used for the deconvolution problem. Special attention is paid to deep learning as the most powerful and flexible modern approach. The review describes the major architectures of neural networks used for the deconvolution problem. We describe the difficulties in their application, such as the discrepancy between the standard loss functions and the visual content and the heterogeneity of the images. Next, we examine how to deal with this by introducing new loss functions, multiscale learning, and prior knowledge of visual content. In conclusion, a review of promising directions and further development of deconvolution methods in microscopy is given.
在现代数字显微镜技术中,反卷积方法被广泛用于消除多种图像缺陷并提高分辨率。在本综述中,我们将这些方法分为经典方法、基于深度学习的方法和基于优化的方法。该综述描述了神经网络的主要架构,如卷积神经网络和生成对抗网络、自动编码器、各种形式的循环网络以及用于反卷积问题的注意力机制。特别关注深度学习,因为它是最强大且灵活的现代方法。该综述描述了用于反卷积问题的神经网络的主要架构。我们描述了它们应用中的困难,如标准损失函数与视觉内容之间的差异以及图像的异质性。接下来,我们研究如何通过引入新的损失函数、多尺度学习和视觉内容的先验知识来处理这些问题。总之,给出了显微镜中反卷积方法的有前景的方向及进一步发展的综述。