Suppr超能文献

用于仿生电刺激假肢感觉最优设计的综合基于模型的框架。

A comprehensive model-based framework for optimal design of biomimetic patterns of electrical stimulation for prosthetic sensation.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, United States of America.

Deptartment of Physiology, Northwestern University, Chicago, IL, United States of America.

出版信息

J Neural Eng. 2020 Sep 18;17(4):046045. doi: 10.1088/1741-2552/abacd8.

Abstract

OBJECTIVE

Touch and proprioception are essential to motor function as shown by the movement deficits that result from the loss of these senses, e.g. due to neuropathy of sensory nerves. To achieve a high-performance brain-controlled prosthetic arm/hand thus requires the restoration of somatosensation, perhaps through intracortical microstimulation (ICMS) of somatosensory cortex (S1). The challenge is to generate patterns of neuronal activation that evoke interpretable percepts. We present a framework to design optimal spatiotemporal patterns of ICMS (STIM) that evoke naturalistic patterns of neuronal activity and demonstrate performance superior to four previous approaches.

APPROACH

We recorded multiunit activity from S1 during a center-out reach task (from proprioceptive neurons in Brodmann's area 2) and during application of skin indentations (from cutaneous neurons in Brodmann's area 1). We implemented a computational model of a cortical hypercolumn and used a genetic algorithm to design STIM that evoked patterns of model neuron activity that mimicked their experimentally-measured counterparts. Finally, from the ICMS patterns, the evoked neuronal activity, and the stimulus parameters that gave rise to it, we trained a recurrent neural network (RNN) to learn the mapping function between the physical stimulus and the biomimetic stimulation pattern, i.e. the sensory encoder to be integrated into a neuroprosthetic device.

MAIN RESULTS

We identified ICMS patterns that evoked simulated responses that closely approximated the measured responses for neurons within 50 µm of the electrode tip. The RNN-based sensory encoder generalized well to untrained limb movements or skin indentations. STIM designed using the model-based optimization approach outperformed STIM designed using existing linear and nonlinear mappings.

SIGNIFICANCE

The proposed framework produces an encoder that converts limb state or patterns of pressure exerted onto the prosthetic hand into STIM that evoke naturalistic patterns of neuronal activation.

摘要

目的

触觉和本体感觉对于运动功能至关重要,例如由于感觉神经的神经病变而导致这些感觉丧失,会导致运动功能障碍。因此,要实现高性能的脑控假肢/手,就需要恢复体感,也许可以通过皮层内微刺激(ICMS)来刺激体感皮层(S1)。挑战在于产生可引发可解释感知的神经元激活模式。我们提出了一种设计最佳时空 ICMS(STIM)模式的框架,该模式可引发自然的神经元活动模式,并证明优于以前的四种方法。

方法

我们在中心向外伸手任务期间(来自布罗德曼区域 2 的本体感受神经元)以及皮肤凹陷期间(来自布罗德曼区域 1 的皮肤神经元)从 S1 记录多单位活动。我们实现了皮层超柱的计算模型,并使用遗传算法设计了 STIM,该 STIM 引发了模型神经元活动模式,模仿了他们通过实验测量得到的模式。最后,从 ICMS 模式、诱发的神经元活动以及产生这些活动的刺激参数中,我们训练了一个递归神经网络(RNN)来学习物理刺激和仿生刺激模式之间的映射函数,即要集成到神经假肢设备中的感觉编码器。

主要结果

我们确定了 ICMS 模式,这些模式引发的模拟响应非常接近电极尖端附近 50 µm 内神经元的测量响应。基于 RNN 的感觉编码器对未经训练的肢体运动或皮肤凹陷具有很好的泛化能力。使用基于模型的优化方法设计的 STIM 优于使用现有线性和非线性映射设计的 STIM。

意义

所提出的框架产生了一个编码器,该编码器将肢体状态或施加到手假肢上的压力模式转换为引发自然的神经元激活模式的 STIM。

相似文献

2
Restoring tactile and proprioceptive sensation through a brain interface.通过脑机接口恢复触觉和本体感觉。
Neurobiol Dis. 2015 Nov;83:191-8. doi: 10.1016/j.nbd.2014.08.029. Epub 2014 Sep 6.

引用本文的文献

7
Neural Plasticity in Sensorimotor Brain-Machine Interfaces.感觉运动脑机接口中的神经可塑性。
Annu Rev Biomed Eng. 2023 Jun 8;25:51-76. doi: 10.1146/annurev-bioeng-110220-110833. Epub 2023 Feb 28.
9
Peripheral neurostimulation for encoding artificial somatosensations.外周神经刺激编码人工感觉。
Eur J Neurosci. 2022 Nov;56(10):5888-5901. doi: 10.1111/ejn.15822. Epub 2022 Sep 25.
10
Effects of stimulus pulse rate on somatosensory adaptation in the human cortex.刺激脉冲率对人类皮层体感适应的影响。
Brain Stimul. 2022 Jul-Aug;15(4):987-995. doi: 10.1016/j.brs.2022.05.021. Epub 2022 Jun 4.

本文引用的文献

4
Self-Contained Neuromusculoskeletal Arm Prostheses.自容式神经肌肉骨骼手臂假肢。
N Engl J Med. 2020 Apr 30;382(18):1732-1738. doi: 10.1056/NEJMoa1917537.
5
The frequency of cortical microstimulation shapes artificial touch.皮层微刺激的频率塑造了人工触觉。
Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1191-1200. doi: 10.1073/pnas.1916453117. Epub 2019 Dec 26.
7
A cryptography-based approach for movement decoding.基于密码学的运动解码方法。
Nat Biomed Eng. 2017 Dec;1(12):967-976. doi: 10.1038/s41551-017-0169-7. Epub 2017 Dec 12.
8
Neural Networks for Modeling Neural Spiking in S1 Cortex.用于模拟初级体感皮层中神经脉冲发放的神经网络
Front Syst Neurosci. 2019 Mar 29;13:13. doi: 10.3389/fnsys.2019.00013. eCollection 2019.
9
10
Artifact-free recordings in human bidirectional brain-computer interfaces.无伪迹的人类双向脑机接口记录。
J Neural Eng. 2019 Feb;16(1):016002. doi: 10.1088/1741-2552/aae748. Epub 2018 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验