Suppr超能文献

基于网络的“表型组学”方法从高通量心脏成像数据中发现患者亚型。

A Network-Based "Phenomics" Approach for Discovering Patient Subtypes From High-Throughput Cardiac Imaging Data.

机构信息

West Virginia University Heart & Vascular Institute, Morgantown, West Virginia; Division of Cardiology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

West Virginia University Heart & Vascular Institute, Morgantown, West Virginia.

出版信息

JACC Cardiovasc Imaging. 2020 Aug;13(8):1655-1670. doi: 10.1016/j.jcmg.2020.02.008. Epub 2020 Mar 16.

Abstract

OBJECTIVES

The authors present a method that focuses on cohort matching algorithms for performing patient-to-patient comparisons along multiple echocardiographic parameters for predicting meaningful patient subgroups.

BACKGROUND

Recent efforts in collecting multiomics data open numerous opportunities for comprehensive integration of highly heterogenous data to classify a patient's cardiovascular state, eventually leading to tailored therapies.

METHODS

A total of 42 echocardiography features, including 2-dimensional and Doppler measurements, left ventricular (LV) and atrial speckle-tracking, and vector flow mapping data, were obtained in 297 patients. A similarity network was developed to delineate distinct patient phenotypes, and then neural network models were trained for discriminating the phenotypic presentations.

RESULTS

The patient similarity model identified 4 clusters (I to IV), with patients in each cluster showed distinctive clinical presentations based on American College of Cardiology/American Heart Association heart failure stage and the occurrence of short-term major adverse cardiac and cerebrovascular events. Compared with other clusters, cluster IV had a higher prevalence of stage C or D heart failure (78%; p < 0.001), New York Heart Association functional classes III or IV (61%; p < 0.001), and a higher incidence of major adverse cardiac and cerebrovascular events (p < 0.001). The neural network model showed robust prediction of patient clusters, with area under the receiver-operating characteristic curve ranging from 0.82 to 0.99 for the independent hold-out validation set.

CONCLUSIONS

Automated computational methods for phenotyping can be an effective strategy to fuse multidimensional parameters of LV structure and function. It can identify distinct cardiac phenogroups in terms of clinical characteristics, cardiac structure and function, hemodynamics, and outcomes.

摘要

目的

作者提出了一种方法,该方法侧重于队列匹配算法,用于沿多个超声心动图参数对患者进行患者间比较,以预测有意义的患者亚组。

背景

收集多组学数据的最新努力为全面整合高度异质数据提供了许多机会,以对患者的心血管状态进行分类,最终实现个体化治疗。

方法

共获得 297 例患者的 42 项超声心动图特征,包括 2 维和多普勒测量、左心室(LV)和心房斑点追踪以及向量血流映射数据。建立了相似性网络以描绘不同的患者表型,然后训练神经网络模型以区分表型表现。

结果

患者相似性模型确定了 4 个聚类(I 至 IV),每个聚类中的患者根据美国心脏病学会/美国心脏协会心力衰竭阶段和短期主要不良心脏和脑血管事件的发生,表现出独特的临床表现。与其他聚类相比,聚类 IV 具有更高的 C 或 D 期心力衰竭(78%;p<0.001)、美国纽约心脏病协会功能分类 III 或 IV(61%;p<0.001)和更高的主要不良心脏和脑血管事件发生率(p<0.001)。神经网络模型对患者聚类具有稳健的预测能力,在独立保留验证集中,受试者工作特征曲线下面积范围为 0.82 至 0.99。

结论

用于表型分析的自动化计算方法是融合 LV 结构和功能多维参数的有效策略。它可以根据临床特征、心脏结构和功能、血液动力学和结果来识别不同的心脏表型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验