Channing Division of Network Medicine (E.M., J.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
Division of Cardiovascular Medicine, Department of Medicine (J.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
Arterioscler Thromb Vasc Biol. 2023 Jul;43(7):1111-1123. doi: 10.1161/ATVBAHA.122.318892. Epub 2023 May 25.
The complex landscape of cardiovascular diseases encompasses a wide range of related pathologies arising from diverse molecular mechanisms and exhibiting heterogeneous phenotypes. This variety of manifestations poses significant challenges in the development of treatment strategies. The increasing availability of precise phenotypic and multiomics data of cardiovascular disease patient populations has spurred the development of a variety of computational disease subtyping techniques to identify distinct subgroups with unique underlying pathogeneses. In this review, we outline the essential components of computational approaches to select, integrate, and cluster omics and clinical data in the context of cardiovascular disease research. We delve into the challenges faced during different stages of the analysis, including feature selection and extraction, data integration, and clustering algorithms. Next, we highlight representative applications of subtyping pipelines in heart failure and coronary artery disease. Finally, we discuss the current challenges and future directions in the development of robust subtyping approaches that can be implemented in clinical workflows, ultimately contributing to the ongoing evolution of precision medicine in health care.
心血管疾病的复杂格局包含了广泛的相关病理学,这些病理学源自多种分子机制,并表现出异质的表型。这种多样性的表现形式给治疗策略的制定带来了巨大的挑战。随着心血管疾病患者群体的精确表型和多组学数据的日益普及,各种计算疾病亚型的技术也得到了发展,这些技术可以识别具有独特潜在病因的不同亚组。在这篇综述中,我们概述了在心血管疾病研究中选择、整合和聚类组学和临床数据的计算方法的基本组成部分。我们深入探讨了在分析的不同阶段所面临的挑战,包括特征选择和提取、数据集成和聚类算法。接下来,我们重点介绍了亚型分析在心力衰竭和冠状动脉疾病中的代表性应用。最后,我们讨论了在开发能够在临床工作流程中实施的稳健亚型分析方法方面的当前挑战和未来方向,最终为医疗保健中精准医学的不断发展做出贡献。