Suppr超能文献

线粒体钙驱动时钟基因依赖性的丙酮酸脱氢酶和氧化磷酸化的激活。

Mitochondrial calcium drives clock gene-dependent activation of pyruvate dehydrogenase and of oxidative phosphorylation.

机构信息

Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.

Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.

出版信息

Biochim Biophys Acta Mol Cell Res. 2020 Nov;1867(11):118815. doi: 10.1016/j.bbamcr.2020.118815. Epub 2020 Aug 5.

Abstract

Regulation of metabolism is emerging as a major output of circadian clock circuitry in mammals. Accordingly, mitochondrial oxidative metabolism undergoes both in vivo and in vitro daily oscillatory activities. In a previous study we showed that both glycolysis and mitochondrial oxygen consumption display a similar time-resolved rhythmic activity in synchronized HepG2 cell cultures, which translates in overall bioenergetic changes as here documented by measurement of the ATP level. Treatment of synchronized cells with specific metabolic inhibitors unveiled pyruvate as a major source of reducing equivalents to the respiratory chain with its oxidation driven by the rhythmic (de)phosphorylation of pyruvate dehydrogenase. Further investigation enabled to causally link the autonomous cadenced mitochondrial respiration to a synchronous increase of the mitochondrial Ca. The rhythmic change of the mitochondrial respiration was dampened by inhibitors of the mitochondrial Ca uniporter as well as of the ryanodine receptor Ca channel or the ADPR cyclase, indicating that the mitochondrial Ca influx originated from the ER store, likely at contact sites with the mitochondrial compartment. Notably, blockage of the mitochondrial Ca influx resulted in deregulation of the expression of canonical clock genes such as BMALl1, CLOCK, NR1D1. All together our findings unveil a hitherto unexplored function of Ca-mediated signaling in time keeping the mitochondrial metabolism and in its feed-back modulation of the circadian clockwork.

摘要

代谢调控正成为哺乳动物生物钟电路的主要输出。因此,线粒体氧化代谢在体内和体外都表现出每日的振荡活动。在之前的一项研究中,我们表明糖酵解和线粒体耗氧都在同步化的 HepG2 细胞培养物中表现出相似的时间分辨节律性活动,这在整体生物能量变化中得到了体现,正如本文通过测量 ATP 水平所记录的那样。用特定的代谢抑制剂处理同步细胞揭示了丙酮酸作为呼吸链的主要还原当量来源,其氧化由丙酮酸脱氢酶的节律(去)磷酸化驱动。进一步的研究能够将自主节拍的线粒体呼吸与线粒体 Ca 的同步增加联系起来。线粒体呼吸的节律性变化被线粒体 Ca 单向转运体抑制剂、ryanodine 受体 Ca 通道或 ADPR 环化酶抑制剂所抑制,表明线粒体 Ca 内流来自内质网库,可能发生在与线粒体区室的接触部位。值得注意的是,阻断线粒体 Ca 内流导致经典时钟基因如 BMALl1、CLOCK、NR1D1 的表达失调。总之,我们的发现揭示了 Ca 介导的信号在维持线粒体代谢的时间以及对生物钟机制的反馈调节中的一个迄今尚未探索的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验