Suppr超能文献

视交叉上核神经元中的同步胞质-核钙节律

In-phasic cytosolic-nuclear Ca rhythms in suprachiasmatic nucleus neurons.

作者信息

Hiro Sota, Kobayashi Kenta, Nemoto Tomomi, Enoki Ryosuke

机构信息

Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, Japan.

Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.

出版信息

Front Neurosci. 2023 Dec 20;17:1323565. doi: 10.3389/fnins.2023.1323565. eCollection 2023.

Abstract

The suprachiasmatic nucleus (SCN) of the hypothalamus is the master circadian clock in mammals. SCN neurons exhibit circadian Ca rhythms in the cytosol, which is thought to act as a messenger linking the transcriptional/translational feedback loop (TTFL) and physiological activities. Transcriptional regulation occurs in the nucleus in the TTFL model, and Ca-dependent kinase regulates the clock gene transcription. However, the Ca regulatory mechanisms between cytosol and nucleus as well as the ionic origin of Ca rhythms remain unclear. In the present study, we monitored circadian-timescale Ca dynamics in the nucleus and cytosol of SCN neurons at the single-cell and network levels. We observed robust nuclear Ca rhythm in the same phase as the cytosolic rhythm in single SCN neurons and entire regions. Neuronal firing inhibition reduced the amplitude of both nuclear and cytosolic Ca rhythms, whereas blocking of Ca release from the endoplasmic reticulum (ER) via ryanodine and inositol 1,4,5-trisphosphate (IP) receptors had a minor effect on either Ca rhythms. We conclude that the in-phasic circadian Ca rhythms in the cytosol and nucleus are mainly driven by Ca influx from the extracellular space, likely through the nuclear pore. It also raises the possibility that nuclear Ca rhythms directly regulate transcription

摘要

下丘脑的视交叉上核(SCN)是哺乳动物的主生物钟。SCN神经元在细胞质中表现出昼夜节律性的Ca节律,其被认为是连接转录/翻译反馈环(TTFL)和生理活动的信使。在TTFL模型中,转录调控发生在细胞核中,且Ca依赖性激酶调节生物钟基因转录。然而,细胞质和细胞核之间的Ca调节机制以及Ca节律的离子来源仍不清楚。在本研究中,我们在单细胞和网络水平监测了SCN神经元细胞核和细胞质中昼夜时间尺度的Ca动态。我们在单个SCN神经元和整个区域中观察到与细胞质节律同相位的强烈核Ca节律。神经元放电抑制降低了核和细胞质Ca节律的幅度,而通过兰尼碱和肌醇1,4,5-三磷酸(IP)受体阻断内质网(ER)的Ca释放对任何一种Ca节律的影响都较小。我们得出结论,细胞质和细胞核中同相位的昼夜节律性Ca节律主要由细胞外空间的Ca内流驱动,可能是通过核孔。这也增加了核Ca节律直接调节转录的可能性

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/10765503/ac72703977d9/fnins-17-1323565-g003.jpg

相似文献

1
In-phasic cytosolic-nuclear Ca rhythms in suprachiasmatic nucleus neurons.
Front Neurosci. 2023 Dec 20;17:1323565. doi: 10.3389/fnins.2023.1323565. eCollection 2023.
2
Calcium Circadian Rhythmicity in the Suprachiasmatic Nucleus: Cell Autonomy and Network Modulation.
eNeuro. 2017 Aug 18;4(4). doi: 10.1523/ENEURO.0160-17.2017. eCollection 2017 Jul-Aug.
3
Bmal1 is an essential regulator for circadian cytosolic Ca²⁺ rhythms in suprachiasmatic nucleus neurons.
J Neurosci. 2014 Sep 3;34(36):12029-38. doi: 10.1523/JNEUROSCI.5158-13.2014.
4
Calcium dynamics and circadian rhythms in suprachiasmatic nucleus neurons.
Neuroscientist. 2004 Aug;10(4):315-24. doi: 10.1177/10738584031262149.
5
Circadian dynamics of cytosolic and nuclear Ca2+ in single suprachiasmatic nucleus neurons.
Neuron. 2003 Apr 24;38(2):253-63. doi: 10.1016/s0896-6273(03)00164-8.
6
Diurnal properties of voltage-gated Ca currents in suprachiasmatic nucleus and roles in action potential firing.
J Physiol. 2020 May;598(9):1775-1790. doi: 10.1113/JP278327. Epub 2019 Jul 3.
8
Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus.
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2476-E2485. doi: 10.1073/pnas.1616815114. Epub 2017 Mar 7.
9
Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons.
Cell Rep. 2022 May 10;39(6):110787. doi: 10.1016/j.celrep.2022.110787.
10
Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock.
J Mol Biol. 2020 May 29;432(12):3639-3660. doi: 10.1016/j.jmb.2020.01.019. Epub 2020 Jan 26.

本文引用的文献

1
Mitochondrial LETM1 drives ionic and molecular clock rhythms in circadian pacemaker neurons.
Cell Rep. 2022 May 10;39(6):110787. doi: 10.1016/j.celrep.2022.110787.
2
Comparative Ca channel contributions to intracellular Ca levels in the circadian clock.
Biophys Rep (N Y). 2021 Sep 8;1(1). doi: 10.1016/j.bpr.2021.100005. Epub 2021 Jul 21.
3
High rates of calcium-free diffusion in the cytosol of living cells.
Biophys J. 2021 Sep 21;120(18):3960-3972. doi: 10.1016/j.bpj.2021.08.019. Epub 2021 Aug 26.
4
Editorial: Development of Circadian Clock Functions.
Front Neurosci. 2021 Aug 9;15:735007. doi: 10.3389/fnins.2021.735007. eCollection 2021.
5
Live-cell imaging of circadian clock protein dynamics in CRISPR-generated knock-in cells.
Nat Commun. 2021 Jun 18;12(1):3796. doi: 10.1038/s41467-021-24086-9.
7
Na/Ca exchanger mediates cold Ca signaling conserved for temperature-compensated circadian rhythms.
Sci Adv. 2021 Apr 30;7(18). doi: 10.1126/sciadv.abe8132. Print 2021 Apr.
8
Mitochondrial calcium drives clock gene-dependent activation of pyruvate dehydrogenase and of oxidative phosphorylation.
Biochim Biophys Acta Mol Cell Res. 2020 Nov;1867(11):118815. doi: 10.1016/j.bbamcr.2020.118815. Epub 2020 Aug 5.
9
Retrograde gene transfer into neural pathways mediated by adeno-associated virus (AAV)-AAV receptor interaction.
J Neurosci Methods. 2020 Nov 1;345:108887. doi: 10.1016/j.jneumeth.2020.108887. Epub 2020 Jul 30.
10
Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus.
Nat Neurosci. 2020 Mar;23(3):456-467. doi: 10.1038/s41593-020-0586-x. Epub 2020 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验