Suppr超能文献

分析精神分裂症患者肠道微生物组的多样性及其作为生物标志物的潜在价值:一项队列研究。

Analysis of the diversity of intestinal microbiome and its potential value as a biomarker in patients with schizophrenia: A cohort study.

机构信息

Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, Anhui, China.

Anhui Mental Health Center, Hefei, Anhui, China.

出版信息

Psychiatry Res. 2020 Sep;291:113260. doi: 10.1016/j.psychres.2020.113260. Epub 2020 Jun 27.

Abstract

Exploring the gut microbiota characteristics of patients with acute and remission schizophrenia (SCZ) and evaluating the potential of the gut microbiome as a non-invasive biomarker for SCZ. A total of 87 fecal samples were collected, including a total of 58 samples from 29 SCZ patients over two different periods (remission and onset period) and 29 samples from the control group for 16S rRNA Miseq.The changes of intestinal microbiota in SCZ patients from remission to onset were analyzed, and a random forest model was constructed to recognize biomarkers. The optimal three genus-level diagnosis biomarkers were identified through an AUC validation on a random forest model, furthermore, an AUC of 0.76 (95% CI (0.63, 0.89)) was achieved between 29 aSCZ and 29 HCs. Compared with the control group, the first 11 OUT-level' biomarkers were identified in rSCZ group. As a status marker of the disease, the AUC of 0.7 (95% CI (0.56, 0.84)) was achieved between 29 rSCZ and 29 HCs. There were differences between SCZ patients and HCs, acute and remission patients as well, suggesting that the potential of the gut microbiota as a non-invasive diagnostic tool. Moreover, the features of the gut microbiome of SCZ provide clues for disease prognosis assessment and targeted intervention.

摘要

探讨急性和缓解期精神分裂症(SCZ)患者的肠道微生物群特征,并评估肠道微生物组作为 SCZ 非侵入性生物标志物的潜力。共采集了 87 份粪便样本,包括 29 名 SCZ 患者在两个不同时期(缓解期和发病期)的总共 58 份样本和对照组的 29 份样本进行 16S rRNA Miseq。分析了 SCZ 患者从缓解期到发病期的肠道微生物群变化,并构建随机森林模型以识别生物标志物。通过随机森林模型的 AUC 验证确定了最佳的三个属水平诊断生物标志物,此外,在 29 名 aSCZ 和 29 名 HC 之间,随机森林模型的 AUC 达到 0.76(95%CI(0.63,0.89))。与对照组相比,rSCZ 组鉴定出了前 11 个 OUT 水平的生物标志物。作为疾病的状态标志物,在 29 名 rSCZ 和 29 名 HC 之间,AUC 达到 0.7(95%CI(0.56,0.84))。SCZ 患者与 HC 之间存在差异,急性和缓解期患者之间也存在差异,表明肠道微生物群作为一种非侵入性诊断工具的潜力。此外,SCZ 患者肠道微生物组的特征为疾病预后评估和靶向干预提供了线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验