Division of Signal Processing and Electronic Systems, Institute of Automation and Robotics, Poznan University of Technology, Jana Pawła 24, 60-965 Poznań, Poland.
Sensors (Basel). 2020 Aug 5;20(16):4363. doi: 10.3390/s20164363.
This paper presents an experimental evaluation of real-time pedestrian detection algorithms and their tuning using the proposed universal performance index. With this index, the precise choice of various parameters is possible. Moreover, we determined the best resolution of the analysis window, which is much lower than the initial window. By such means, we can speed-up the processing (i.e., reduce the classification time by 74%). There are cases in which we increased both the processing speed and the classification accuracy. We made experiments with various baseline detectors and datasets in order to confirm versatility of the proposed ideas. The analyzed classifiers are those typically applied to detection of pedestrians, namely: aggregated channel feature (ACF), deep convolutional neural network (CNN), and support vector machine (SVM). We used a suite of five precisely chosen night (and day) IR vision datasets.
本文通过使用所提出的通用性能指标,对实时行人检测算法及其调整进行了实验评估。利用该指标,可以精确选择各种参数。此外,我们确定了分析窗口的最佳分辨率,其远低于初始窗口。通过这种方式,可以加快处理速度(即,将分类时间减少 74%)。在某些情况下,我们提高了处理速度和分类准确性。我们使用各种基线检测器和数据集进行实验,以验证所提出的方法的通用性。所分析的分类器是通常应用于行人检测的分类器,即:聚合信道特征(ACF)、深度卷积神经网络(CNN)和支持向量机(SVM)。我们使用了五套精心挑选的夜间(和白天)红外视觉数据集。