Developmental Biology & Cell Biology and Biophysics Units, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
Centre for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France, 75005 Paris, France.
Cells. 2020 Aug 5;9(8):1840. doi: 10.3390/cells9081840.
Animals display extensive diversity in motifs adorning their coat, yet these patterns have reproducible orientation and periodicity within species or groups. Morphological variation has been traditionally used to dissect the genetic basis of evolutionary change, while pattern conservation and stability in both mathematical and organismal models has served to identify core developmental events. Two patterning theories, namely instruction and self-organisation, emerged from this work. Combined, they provide an appealing explanation for how natural patterns form and evolve, but in vivo factors underlying these mechanisms remain elusive. By bridging developmental biology and mathematics, novel frameworks recently allowed breakthroughs in our understanding of pattern establishment, unveiling how patterning strategies combine in space and time, or the importance of tissue morphogenesis in generating positional information. Adding results from surveys of natural variation to these empirical-modelling dialogues improves model inference, analysis, and in vivo testing. In this evo-devo-numerical synthesis, mathematical models have to reproduce not only given stable patterns but also the dynamics of their emergence, and the extent of inter-species variation in these dynamics through minimal parameter change. This integrative approach can help in disentangling molecular, cellular and mechanical interaction during pattern establishment.
动物的皮毛上装饰着各种各样的图案,但这些图案在物种或群体内部具有可重复的方向和周期性。形态变异一直被用于剖析进化变化的遗传基础,而数学和生物体模型中的图案保守性和稳定性则有助于确定核心发育事件。两种图案形成理论,即指令和自组织,由此产生。它们结合在一起,为自然图案的形成和进化提供了一个有吸引力的解释,但这些机制背后的体内因素仍然难以捉摸。通过将发育生物学和数学结合起来,新的框架最近使我们对模式建立的理解取得了突破,揭示了模式形成策略如何在空间和时间上结合,或者组织形态发生在产生位置信息方面的重要性。将自然变异调查的结果添加到这些经验模型对话中,可以改善模型推断、分析和体内测试。在这种进化发育数值综合中,数学模型不仅要再现给定的稳定模式,还要再现其出现的动态,以及通过最小参数变化在这些动态中物种间变异的程度。这种综合方法有助于在模式建立过程中分离分子、细胞和机械相互作用。