Laboratoire de Biologie et Modélisation de la Cellule, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Lyon, France.
Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, Lyon, France.
PLoS Biol. 2019 Feb 7;17(2):e3000064. doi: 10.1371/journal.pbio.3000064. eCollection 2019 Feb.
When patterns are set during embryogenesis, it is expected that they are straightly established rather than subsequently modified. The patterning of the three mouse molars is, however, far from straight, likely as a result of mouse evolutionary history. The first-formed tooth signaling centers, called MS and R2, disappear before driving tooth formation and are thought to be vestiges of the premolars found in mouse ancestors. Moreover, the mature signaling center of the first molar (M1) is formed from the fusion of two signaling centers (R2 and early M1). Here, we report that broad activation of Edar expression precedes its spatial restriction to tooth signaling centers. This reveals a hidden two-step patterning process for tooth signaling centers, which was modeled with a single activator-inhibitor pair subject to reaction-diffusion (RD). The study of Edar expression also unveiled successive phases of signaling center formation, erasing, recovering, and fusion. Our model, in which R2 signaling center is not intrinsically defective but erased by the broad activation preceding M1 signaling center formation, predicted the surprising rescue of R2 in Edar mutant mice, where activation is reduced. The importance of this R2-M1 interaction was confirmed by ex vivo cultures showing that R2 is capable of forming a tooth. Finally, by introducing chemotaxis as a secondary process to RD, we recapitulated in silico different conditions in which R2 and M1 centers fuse or not. In conclusion, pattern formation in the mouse molar field relies on basic mechanisms whose dynamics produce embryonic patterns that are plastic objects rather than fixed end points.
当胚胎发生过程中形成模式时,预计它们是直接建立的,而不是随后修改的。然而,老鼠的三个臼齿的模式远非笔直,这可能是老鼠进化历史的结果。首先形成的牙齿信号中心,称为 MS 和 R2,在驱动牙齿形成之前消失,被认为是老鼠祖先的前磨牙的遗迹。此外,第一磨牙(M1)的成熟信号中心是由两个信号中心(R2 和早期 M1)融合形成的。在这里,我们报告 Edar 表达的广泛激活先于其空间限制到牙齿信号中心。这揭示了牙齿信号中心的隐藏两步模式形成过程,该过程采用了受反应扩散(RD)作用的单个激活剂-抑制剂对进行建模。Edar 表达的研究还揭示了信号中心形成、消除、恢复和融合的连续阶段。我们的模型表明,R2 信号中心本身并没有缺陷,而是被 M1 信号中心形成前的广泛激活所消除,这预测了 Edar 突变小鼠中 R2 的惊人挽救,其中激活被降低。R2-M1 相互作用的重要性通过体外培养得到了证实,体外培养表明 R2 能够形成牙齿。最后,通过将趋化性作为 RD 的二次过程引入,我们在计算机中再现了 R2 和 M1 中心融合或不融合的不同条件。总之,老鼠臼齿场的模式形成依赖于基本机制,其动力学产生的胚胎模式是可塑的物体,而不是固定的终点。