Suppr超能文献

固定和分布式基因表达时滞在反应扩散系统中。

Fixed and Distributed Gene Expression Time Delays in Reaction-Diffusion Systems.

机构信息

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom.

Mathematical Sciences Department, Durham University, Upper Mountjoy Campus, Stockton Rd, Durham, DH1 3LE, United Kingdom.

出版信息

Bull Math Biol. 2022 Aug 7;84(9):98. doi: 10.1007/s11538-022-01052-0.

Abstract

Time delays, modelling the process of intracellular gene expression, have been shown to have important impacts on the dynamics of pattern formation in reaction-diffusion systems. In particular, past work has shown that such time delays can shrink the Turing space, thereby inhibiting patterns from forming across large ranges of parameters. Such delays can also increase the time taken for pattern formation even when Turing instabilities occur. Here, we consider reaction-diffusion models incorporating fixed or distributed time delays, modelling the underlying stochastic nature of gene expression dynamics, and analyse these through a systematic linear instability analysis and numerical simulations for several sets of different reaction kinetics. We find that even complicated distribution kernels (skewed Gaussian probability density functions) have little impact on the reaction-diffusion dynamics compared to fixed delays with the same mean delay. We show that the location of the delay terms in the model can lead to changes in the size of the Turing space (increasing or decreasing) as the mean time delay, [Formula: see text], is increased. We show that the time to pattern formation from a perturbation of the homogeneous steady state scales linearly with [Formula: see text], and conjecture that this is a general impact of time delay on reaction-diffusion dynamics, independent of the form of the kinetics or location of the delayed terms. Finally, we show that while initial and boundary conditions can influence these dynamics, particularly the time-to-pattern, the effects of delay appear robust under variations of initial and boundary data. Overall, our results help clarify the role of gene expression time delays in reaction-diffusion patterning, and suggest clear directions for further work in studying more realistic models of pattern formation.

摘要

时滞会对反应-扩散系统中模式形成的动力学产生重要影响,这已在对细胞内基因表达过程的建模中得到了证实。具体来说,过去的研究表明,这种时滞可以缩小图灵空间,从而抑制大范围参数下的模式形成。即使发生图灵不稳定性,这种时滞也会增加模式形成所需的时间。在这里,我们考虑了包含固定或分布式时滞的反应-扩散模型,以模拟基因表达动力学的潜在随机性质,并通过系统的线性不稳定性分析和针对几组不同反应动力学的数值模拟来分析这些模型。我们发现,即使是复杂的分布核(偏态高斯概率密度函数),与具有相同平均时滞的固定时滞相比,对反应-扩散动力学的影响也很小。我们表明,模型中延迟项的位置会导致图灵空间的大小(增加或减少)发生变化,这是由于平均延迟时间 [Formula: see text] 的增加。我们表明,从均匀稳态的微扰到模式形成的时间与 [Formula: see text] 呈线性比例关系,并且推测这是时滞对反应-扩散动力学的普遍影响,与动力学的形式或延迟项的位置无关。最后,我们表明,虽然初始和边界条件会影响这些动力学,特别是时间到模式的形成,但在初始和边界数据的变化下,延迟的影响似乎是稳健的。总的来说,我们的研究结果有助于阐明基因表达时滞在反应-扩散模式形成中的作用,并为进一步研究更现实的模式形成模型提供了明确的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eeca/9357602/4869cae05c6b/11538_2022_1052_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验