Suppr超能文献

解读运动诱发电位的形态

Deciphering the Morphology of Motor Evoked Potentials.

作者信息

Yperman Jan, Becker Thijs, Valkenborg Dirk, Hellings Niels, Cambron Melissa, Dive Dominique, Laureys Guy, Popescu Veronica, Van Wijmeersch Bart, Peeters Liesbet M

机构信息

Theoretical Physics, Hasselt University, Diepenbeek, Belgium.

I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium.

出版信息

Front Neuroinform. 2020 Jul 14;14:28. doi: 10.3389/fninf.2020.00028. eCollection 2020.

Abstract

Motor Evoked Potentials (MEPs) are used to monitor disability progression in multiple sclerosis (MS). Their morphology plays an important role in this process. Currently, however, there is no clear definition of what constitutes a normal or abnormal morphology. To address this, five experts independently labeled the morphology (normal or abnormal) of the same set of 1,000 MEPs. The intra- and inter-rater agreement between the experts indicates they agree on the concept of morphology, but differ in their choice of threshold between normal and abnormal morphology. We subsequently performed an automated extraction of 5,943 time series features from the MEPs to identify a valid proxy for morphology, based on the provided labels. To do this, we compared the cross-validation performances of one-dimensional logistic regression models fitted to each of the features individually. We find that the approximate entropy (ApEn) feature can accurately reproduce the majority-vote labels. The performance of this feature is evaluated on an independent test set by comparing to the majority vote of the neurologists, obtaining an AUC score of 0.92. The model slightly outperforms the average neurologist at reproducing the neurologists consensus-vote labels. We can conclude that MEP morphology can be consistently defined by pooling the interpretations from multiple neurologists and that ApEn is a valid continuous score for this. Having an objective and reproducible MEP morphological abnormality score will allow researchers to include this feature in their models, without manual annotation becoming a bottleneck. This is crucial for large-scale, multi-center datasets. An exploratory analysis on a large single-center dataset shows that ApEn is potentially clinically useful. Introducing an automated, objective, and reproducible definition of morphology could help overcome some of the barriers that are currently obstructing broad adoption of evoked potentials in daily care and patient follow-up, such as standardization of measurements between different centers, and formulating guidelines for clinical use.

摘要

运动诱发电位(MEPs)用于监测多发性硬化症(MS)患者的残疾进展情况。其形态在这一过程中起着重要作用。然而,目前对于正常或异常形态的构成尚无明确界定。为解决这一问题,五位专家独立对同一组1000个运动诱发电位的形态(正常或异常)进行了标注。专家之间的内部和外部评级一致性表明,他们在形态概念上达成了一致,但在正常与异常形态之间的阈值选择上存在差异。随后,我们基于提供的标注,从运动诱发电位中自动提取了5943个时间序列特征,以确定一个有效的形态替代指标。为此,我们比较了分别针对每个特征拟合的一维逻辑回归模型的交叉验证性能。我们发现近似熵(ApEn)特征能够准确再现多数投票标注。通过与神经科医生的多数投票进行比较,在独立测试集上评估了该特征的性能,获得了0.92的AUC分数。在再现神经科医生的共识投票标注方面,该模型略优于普通神经科医生。我们可以得出结论,通过汇总多位神经科医生的解读,可以一致地定义运动诱发电位的形态,并且近似熵是对此有效的连续评分。拥有一个客观且可重复的运动诱发电位形态异常评分将使研究人员能够将此特征纳入其模型,而无需手动标注成为瓶颈。这对于大规模、多中心数据集至关重要。对一个大型单中心数据集的探索性分析表明,近似熵可能具有临床应用价值。引入形态的自动化、客观且可重复的定义有助于克服目前阻碍诱发电位在日常护理和患者随访中广泛应用的一些障碍,例如不同中心之间测量的标准化以及制定临床使用指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验