Suppr超能文献

机器学习分析运动诱发电位时间序列,以预测多发性硬化症的残疾进展。

Machine learning analysis of motor evoked potential time series to predict disability progression in multiple sclerosis.

机构信息

Theoretical Physics, Hasselt University, Diepenbeek, Belgium.

I-Biostat, Data Science Institute, Hasselt University,, Diepenbeek, Belgium.

出版信息

BMC Neurol. 2020 Mar 21;20(1):105. doi: 10.1186/s12883-020-01672-w.

Abstract

BACKGROUND

Evoked potentials (EPs) are a measure of the conductivity of the central nervous system. They are used to monitor disease progression of multiple sclerosis patients. Previous studies only extracted a few variables from the EPs, which are often further condensed into a single variable: the EP score. We perform a machine learning analysis of motor EP that uses the whole time series, instead of a few variables, to predict disability progression after two years. Obtaining realistic performance estimates of this task has been difficult because of small data set sizes. We recently extracted a dataset of EPs from the Rehabiliation & MS Center in Overpelt, Belgium. Our data set is large enough to obtain, for the first time, a performance estimate on an independent test set containing different patients.

METHODS

We extracted a large number of time series features from the motor EPs with the highly comparative time series analysis software package. Mutual information with the target and the Boruta method are used to find features which contain information not included in the features studied in the literature. We use random forests (RF) and logistic regression (LR) classifiers to predict disability progression after two years. Statistical significance of the performance increase when adding extra features is checked.

RESULTS

Including extra time series features in motor EPs leads to a statistically significant improvement compared to using only the known features, although the effect is limited in magnitude (ΔAUC = 0.02 for RF and ΔAUC = 0.05 for LR). RF with extra time series features obtains the best performance (AUC = 0.75±0.07 (mean and standard deviation)), which is good considering the limited number of biomarkers in the model. RF (a nonlinear classifier) outperforms LR (a linear classifier).

CONCLUSIONS

Using machine learning methods on EPs shows promising predictive performance. Using additional EP time series features beyond those already in use leads to a modest increase in performance. Larger datasets, preferably multi-center, are needed for further research. Given a large enough dataset, these models may be used to support clinicians in their decision making process regarding future treatment.

摘要

背景

诱发电位(EPs)是中枢神经系统传导性的测量指标。它们被用于监测多发性硬化症患者的疾病进展。先前的研究仅从 EPs 中提取了几个变量,这些变量通常进一步浓缩为一个单一变量:EP 评分。我们对运动 EP 进行了机器学习分析,该分析使用整个时间序列而不是几个变量来预测两年后的残疾进展。由于数据集规模较小,因此很难获得该任务的现实性能估计。我们最近从比利时奥珀尔特的康复和多发性硬化症中心提取了一组 EP 数据集。我们的数据集足够大,可以首次在包含不同患者的独立测试集中获得性能估计。

方法

我们使用高度比较的时间序列分析软件包从运动 EP 中提取了大量时间序列特征。互信息和 Boruta 方法用于找到包含文献中未研究特征所包含信息的特征。我们使用随机森林(RF)和逻辑回归(LR)分类器来预测两年后的残疾进展。检查添加额外特征时性能提高的统计显着性。

结果

与仅使用已知特征相比,在运动 EP 中包含额外的时间序列特征会导致统计学上的显著改善,尽管效果有限(RF 的ΔAUC=0.02,LR 的ΔAUC=0.05)。使用额外时间序列特征的 RF 获得了最佳性能(AUC=0.75±0.07(均值和标准差)),考虑到模型中生物标志物数量有限,这是很好的。RF(非线性分类器)优于 LR(线性分类器)。

结论

在 EP 上使用机器学习方法显示出有前途的预测性能。使用超出已使用的 EP 时间序列特征的额外特征会导致性能略有提高。需要更大的数据集,最好是多中心数据集,以进行进一步研究。给定足够大的数据集,这些模型可以用于支持临床医生在未来治疗方面的决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a67/7085864/c2b8fdf2a886/12883_2020_1672_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验