Suppr超能文献

使用生物物理模型的深度学习,用于对定量、无伪影和去噪图像进行稳健且加速的重建。

Deep learning using a biophysical model for robust and accelerated reconstruction of quantitative, artifact-free and denoised images.

作者信息

Torop Max, Kothapalli Satya V V N, Sun Yu, Liu Jiaming, Kahali Sayan, Yablonskiy Dmitriy A, Kamilov Ulugbek S

机构信息

Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.

Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.

出版信息

Magn Reson Med. 2020 Dec;84(6):2932-2942. doi: 10.1002/mrm.28344. Epub 2020 Jul 21.

Abstract

PURPOSE

To introduce a novel deep learning method for Robust and Accelerated Reconstruction (RoAR) of quantitative and B0-inhomogeneity-corrected maps from multi-gradient recalled echo (mGRE) MRI data.

METHODS

RoAR trains a convolutional neural network (CNN) to generate quantitative maps free from field inhomogeneity artifacts by adopting a self-supervised learning strategy given (a) mGRE magnitude images, (b) the biophysical model describing mGRE signal decay, and (c) preliminary-evaluated F-function accounting for contribution of macroscopic B0 field inhomogeneities. Importantly, no ground-truth images are required and F-function is only needed during RoAR training but not application.

RESULTS

We show that RoAR preserves all features of maps while offering significant improvements over existing methods in computation speed (seconds vs. hours) and reduced sensitivity to noise. Even for data with SNR = 5 RoAR produced maps with accuracy of 22% while voxel-wise analysis accuracy was 47%. For SNR = 10 the RoAR accuracy increased to 17% vs. 24% for direct voxel-wise analysis.

CONCLUSIONS

RoAR is trained to recognize the macroscopic magnetic field inhomogeneities directly from the input magnitude-only mGRE data and eliminate their effect on measurements. RoAR training is based on the biophysical model and does not require ground-truth maps. Since RoAR utilizes signal information not just from individual voxels but also accounts for spatial patterns of the signals in the images, it reduces the sensitivity of maps to the noise in the data. These features plus high computational speed provide significant benefits for the potential usage of RoAR in clinical settings.

摘要

目的

介绍一种用于从多梯度回波(mGRE)MRI数据中稳健且加速重建(RoAR)定量和B0不均匀性校正图谱的新型深度学习方法。

方法

RoAR通过采用自监督学习策略来训练卷积神经网络(CNN),以生成不受场不均匀性伪影影响的定量图谱,该策略基于(a)mGRE幅度图像、(b)描述mGRE信号衰减的生物物理模型以及(c)考虑宏观B0场不均匀性贡献的初步评估F函数。重要的是,不需要真实图像,并且F函数仅在RoAR训练期间需要,而在应用时不需要。

结果

我们表明,RoAR在保留图谱所有特征的同时,在计算速度(秒级与小时级)方面比现有方法有显著提升,并且对噪声的敏感度降低。即使对于信噪比(SNR)=5的数据,RoAR生成的图谱准确率为22%,而逐体素分析准确率为47%。对于SNR = 10,RoAR的准确率提高到17%,而直接逐体素分析的准确率为24%。

结论

RoAR经过训练可直接从仅输入的幅度mGRE数据中识别宏观磁场不均匀性,并消除其对测量的影响。RoAR训练基于生物物理模型,不需要真实图谱。由于RoAR不仅利用单个体素的信号信息,还考虑图像中信号的空间模式,因此它降低了图谱对数据中噪声的敏感度。这些特性加上高计算速度为RoAR在临床环境中的潜在应用提供了显著优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验