Xu Xiaojian, Kothapalli Satya V V N, Liu Jiaming, Kahali Sayan, Gan Weijie, Yablonskiy Dmitriy A, Kamilov Ulugbek S
Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Radiology, Washington University in St. Louis, St. Louis, Missouri, USA.
Magn Reson Med. 2022 Jul;88(1):106-119. doi: 10.1002/mrm.29188. Epub 2022 Mar 8.
To introduce two novel learning-based motion artifact removal networks (LEARN) for the estimation of quantitative motion- and -inhomogeneity-corrected maps from motion-corrupted multi-Gradient-Recalled Echo (mGRE) MRI data.
We train two convolutional neural networks (CNNs) to correct motion artifacts for high-quality estimation of quantitative -inhomogeneity-corrected maps from mGRE sequences. The first CNN, LEARN-IMG, performs motion correction on complex mGRE images, to enable the subsequent computation of high-quality motion-free quantitative (and any other mGRE-enabled) maps using the standard voxel-wise analysis or machine learning-based analysis. The second CNN, LEARN-BIO, is trained to directly generate motion- and -inhomogeneity-corrected quantitative maps from motion-corrupted magnitude-only mGRE images by taking advantage of the biophysical model describing the mGRE signal decay.
We show that both CNNs trained on synthetic MR images are capable of suppressing motion artifacts while preserving details in the predicted quantitative maps. Significant reduction of motion artifacts on experimental in vivo motion-corrupted data has also been achieved by using our trained models.
Both LEARN-IMG and LEARN-BIO can enable the computation of high-quality motion- and -inhomogeneity-corrected maps. LEARN-IMG performs motion correction on mGRE images and relies on the subsequent analysis for the estimation of maps, while LEARN-BIO directly performs motion- and -inhomogeneity-corrected estimation. Both LEARN-IMG and LEARN-BIO jointly process all the available gradient echoes, which enables them to exploit spatial patterns available in the data. The high computational speed of LEARN-BIO is an advantage that can lead to a broader clinical application.
引入两种基于学习的新型运动伪影去除网络(LEARN),用于从运动 corrupted 的多梯度回波(mGRE)MRI 数据中估计定量运动和不均匀性校正的图谱。
我们训练两个卷积神经网络(CNN)来校正运动伪影,以便从 mGRE 序列中高质量地估计定量不均匀性校正的图谱。第一个 CNN,LEARN-IMG,对复数 mGRE 图像执行运动校正,以便使用标准的体素级分析或基于机器学习的分析来随后计算高质量的无运动定量图谱(以及任何其他基于 mGRE 的图谱)。第二个 CNN,LEARN-BIO,通过利用描述 mGRE 信号衰减的生物物理模型,从仅运动 corrupted 的幅度 mGRE 图像中直接生成运动和不均匀性校正的定量图谱。
我们表明,在合成 MR 图像上训练的两个 CNN 都能够抑制运动伪影,同时在预测的定量图谱中保留细节。通过使用我们训练的模型,在实验性体内运动 corrupted 数据上也实现了运动伪影的显著减少。
LEARN-IMG 和 LEARN-BIO 都能够计算高质量的运动和不均匀性校正的图谱。LEARN-IMG 对 mGRE 图像执行运动校正,并依赖后续分析来估计图谱,而 LEARN-BIO 直接执行运动和不均匀性校正的估计。LEARN-IMG 和 LEARN-BIO 都联合处理所有可用的梯度回波,这使它们能够利用数据中可用的空间模式。LEARN-BIO 的高计算速度是一个优势,可导致更广泛的临床应用。