Suppr超能文献

用于乳腺病变特征描述的空间局部稀疏表示

Spatially localized sparse representations for breast lesion characterization.

作者信息

Zheng Keni, Harris Chelsea, Bakic Predrag, Makrogiannis Sokratis

机构信息

Division of Physics, Engineering, Mathematics and Computer Science, Delaware State University, 1200 N. DuPont Hwy, Dover, DE, 19901-2277, USA.

Department of Radiology, Univ. of Pennsylvania, Philadelphia, PA, 19152, USA.

出版信息

Comput Biol Med. 2020 Aug;123:103914. doi: 10.1016/j.compbiomed.2020.103914. Epub 2020 Jul 16.

Abstract

RATIONALE

The topic of sparse representation of samples in high dimensional spaces has attracted growing interest during the past decade. In this work, we develop sparse representation-based methods for classification of radiological imaging patterns of breast lesions into benign and malignant states.

METHODS

We propose a spatial block decomposition method to address irregularities of the approximation problem and to build an ensemble of classifiers (CL) that we expect to yield more accurate numerical solutions than conventional whole-region of interest (ROI) sparse analyses. We introduce two classification decision strategies based on maximum a posteriori probability (BBMAP-S), or a log likelihood function (BBLL-S).

RESULTS

To evaluate the performance of the proposed approach we used cross-validation techniques on imaging datasets with disease class labels. We utilized the proposed approach for separation of breast lesions into benign and malignant categories in mammograms. The level of difficulty is high in this application and the accuracy may depend on the lesion size. Our results indicate that the proposed integrative sparse analysis addresses the ill-posedness of the approximation problem, producing AUC (area under the receiver operating curve) value of 89.1% for randomized 30-fold cross-validation.

CONCLUSIONS

Furthermore, our comparative experiments showed that the BBLL-S decision function may yield more accurate classification than BBMAP-S because BBLL-S accounts for possible estimation bias.

摘要

原理

在过去十年中,高维空间中样本的稀疏表示这一主题引起了越来越多的关注。在这项工作中,我们开发了基于稀疏表示的方法,用于将乳腺病变的放射成像模式分类为良性和恶性状态。

方法

我们提出了一种空间块分解方法,以解决近似问题的不规则性,并构建一个分类器集合(CL),我们期望它能比传统的全感兴趣区域(ROI)稀疏分析产生更准确的数值解。我们引入了两种基于最大后验概率(BBMAP-S)或对数似然函数(BBLL-S)的分类决策策略。

结果

为了评估所提出方法的性能,我们在带有疾病类别标签的成像数据集上使用了交叉验证技术。我们利用所提出的方法在乳腺X线照片中将乳腺病变分为良性和恶性类别。该应用难度较大,准确性可能取决于病变大小。我们的结果表明,所提出的综合稀疏分析解决了近似问题的不适定性,在随机30折交叉验证中产生了89.1%的受试者操作特征曲线下面积(AUC)值。

结论

此外,我们的对比实验表明,BBLL-S决策函数可能比BBMAP-S产生更准确的分类,因为BBLL-S考虑了可能的估计偏差。

相似文献

1
Spatially localized sparse representations for breast lesion characterization.用于乳腺病变特征描述的空间局部稀疏表示
Comput Biol Med. 2020 Aug;123:103914. doi: 10.1016/j.compbiomed.2020.103914. Epub 2020 Jul 16.

本文引用的文献

2
Mammogram segmentation using multi-atlas deformable registration.使用多图谱变形配准进行乳腺 X 光片分割。
Comput Biol Med. 2019 Jul;110:244-253. doi: 10.1016/j.compbiomed.2019.06.001. Epub 2019 Jun 11.
3
Deep Convolutional Neural Networks for breast cancer screening.深度学习卷积神经网络在乳腺癌筛查中的应用。
Comput Methods Programs Biomed. 2018 Apr;157:19-30. doi: 10.1016/j.cmpb.2018.01.011. Epub 2018 Jan 11.
5
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
6
An ensemble predictive modeling framework for breast cancer classification.用于乳腺癌分类的集成预测建模框架。
Methods. 2017 Dec 1;131:128-134. doi: 10.1016/j.ymeth.2017.07.011. Epub 2017 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验