Suppr超能文献

基于邻域结构相似性映射的乳腺钼靶图像肿块分类

Neighborhood Structural Similarity Mapping for the Classification of Masses in Mammograms.

出版信息

IEEE J Biomed Health Inform. 2018 May;22(3):826-834. doi: 10.1109/JBHI.2017.2715021. Epub 2017 Jun 13.

Abstract

In this paper, two novel feature extraction methods, using neighborhood structural similarity (NSS), are proposed for the characterization of mammographic masses as benign or malignant. Since gray-level distribution of pixels is different in benign and malignant masses, more regular and homogeneous patterns are visible in benign masses compared to malignant masses; the proposed method exploits the similarity between neighboring regions of masses by designing two new features, namely, NSS-I and NSS-II, which capture global similarity at different scales. Complementary to these global features, uniform local binary patterns are computed to enhance the classification efficiency by combining with the proposed features. The performance of the features are evaluated using the images from the mini-mammographic image analysis society (mini-MIAS) and digital database for screening mammography (DDSM) databases, where a tenfold cross-validation technique is incorporated with Fisher linear discriminant analysis, after selecting the optimal set of features using stepwise logistic regression method. The best area under the receiver operating characteristic curve of 0.98 with an accuracy of is achieved with the mini-MIAS database, while the same for the DDSM database is 0.93 with accuracy .

摘要

本文提出了两种新的特征提取方法,即利用邻域结构相似性(NSS),用于描述乳腺肿块是良性还是恶性。由于良性和恶性肿块的像素灰度分布不同,与恶性肿块相比,良性肿块中可见更规则和均匀的模式;所提出的方法通过设计两个新的特征,即 NSS-I 和 NSS-II,利用肿块相邻区域之间的相似性来捕获不同尺度的全局相似性。为了提高分类效率,这些全局特征与均匀的局部二值模式相结合。使用来自小型乳房 X 线摄影图像分析协会(mini-MIAS)和数字筛查乳房 X 线摄影数据库(DDSM)的图像评估特征的性能,采用逐步逻辑回归方法选择最佳特征集后,使用 Fisher 线性判别分析进行十折交叉验证技术。在 mini-MIAS 数据库中,获得了最佳的受试者工作特征曲线下面积为 0.98,准确率为 ;在 DDSM 数据库中,相同的面积为 0.93,准确率为 。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验