Suppr超能文献

具有先进水氧化性能的混合FeNiOOH/α-FeO/石墨烯光电极

Hybrid FeNiOOH/α-FeO/Graphene Photoelectrodes with Advanced Water Oxidation Performance.

作者信息

Kormányos Attila, Kecsenovity Egon, Honarfar Alireza, Pullerits Tönu, Janáky Csaba

机构信息

Department of Physical Chemistry and Materials Science University of Szeged Szeged H-6720 Hungary.

Chemical Physics and NanoLund Lund University Box 124 Lund 22100 Sweden.

出版信息

Adv Funct Mater. 2020 Aug 3;30(31):2002124. doi: 10.1002/adfm.202002124. Epub 2020 Jun 25.

Abstract

In this study, the photoelectrochemical behavior of electrodeposited FeNiOOH/FeO/graphene nanohybrid electrodes is investigated, which has precisely controlled structure and composition. The photoelectrode assembly is designed in a bioinspired manner where each component has its own function: FeO is responsible for the absorption of light, the graphene framework for proper charge carrier transport, while the FeNiOOH overlayer for facile water oxidation. The effect of each component on the photoelectrochemical behavior is studied by linear sweep photovoltammetry, incident photon-to-charge carrier conversion efficiency measurements, and long-term photoelectrolysis. 2.6 times higher photocurrents are obtained for the best-performing FeNiOOH/FeO/graphene system compared to its pristine FeO counterpart. Transient absorption spectroscopy measurements reveal an increased hole-lifetime in the case of the FeO/graphene samples. Long-term photoelectrolysis measurements in combination with Raman spectroscopy, however, prove that the underlying nanocarbon framework is corroded by the photogenerated holes. This issue is tackled by the electrodeposition of a thin FeNiOOH overlayer, which rapidly accepts the photogenerated holes from FeO, thus eliminating the pathway leading to the corrosion of graphene.

摘要

在本研究中,对电沉积的FeNiOOH/FeO/石墨烯纳米杂化电极的光电化学行为进行了研究,该电极具有精确控制的结构和组成。光电极组件采用仿生方式设计,其中每个组件都有其自身的功能:FeO负责光吸收,石墨烯框架用于适当的电荷载流子传输,而FeNiOOH覆盖层用于促进水氧化。通过线性扫描光伏安法、入射光子到电荷载流子转换效率测量和长期光电解研究了各组分对光电化学行为的影响。与原始的FeO对应物相比,性能最佳的FeNiOOH/FeO/石墨烯体系获得的光电流高2.6倍。瞬态吸收光谱测量表明,在FeO/石墨烯样品中,空穴寿命增加。然而,长期光电解测量与拉曼光谱相结合证明,底层的纳米碳框架被光生空穴腐蚀。通过电沉积薄的FeNiOOH覆盖层解决了这个问题,该覆盖层迅速接受来自FeO的光生空穴,从而消除了导致石墨烯腐蚀的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bc5/7405979/d83a037c8b75/ADFM-30-2002124-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验