Suppr超能文献

用于改善光电化学水分解的赤铁矿纳米棒阵列的表面工程掺杂

Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.

作者信息

Shen Shaohua, Zhou Jigang, Dong Chung-Li, Hu Yongfeng, Tseng Eric Nestor, Guo Penghui, Guo Liejin, Mao Samuel S

机构信息

1] International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China [2] Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, United States.

Canadian Light Sources Inc., 44 Innovation Boulevard, Saskatoon, S7N2V3, Canada.

出版信息

Sci Rep. 2014 Oct 15;4:6627. doi: 10.1038/srep06627.

Abstract

Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. A thin, Ag-doped overlayer of ~2-3 nm thickness was formed along α-Fe2O3 nanorods via ultrasonication treatment of solution-based β-FeOOH nanorods in Ag precursor solution followed by high temperature annealing. The obtained α-Fe2O3/AgxFe2-xO3 core/shell nanorod films demonstrated much higher photoelectrochemical performances as photoanodes than the pristine α-Fe2O3 nanorod film, especially in the visible light region; the incident photon-to-current efficiency (IPCE) at 400 nm was increased from 2.2% to 8.4% at 1.23 V vs. RHE (Reversible hydrogen electrode). Mott-Schottky analysis and X-ray absorption spectra revealed that the Ag-doped overlayer not only increased the carrier density in the near-surface region but also accelerated the surface oxidation reaction kinetics, synergistically contributing to the improved photoelectrochemical performances. These findings provide guidance for the design and optimization of nanostructured photoelectrodes for efficient solar water splitting.

摘要

鉴于窄带隙有利于实现优异的光吸收,提高电荷载流子密度和加速表面氧化反应动力学成为提高赤铁矿(α-Fe2O3)光阳极水分解光电化学性能的关键要点。在本研究中,展示了一种简便且廉价的方法来制备核壳结构的α-Fe2O3纳米棒阵列。通过在银前驱体溶液中对基于溶液的β-FeOOH纳米棒进行超声处理,随后进行高温退火,沿着α-Fe2O3纳米棒形成了厚度约为2-3nm的薄银掺杂覆盖层。所获得的α-Fe2O3/AgxFe2-xO3核壳纳米棒薄膜作为光阳极表现出比原始α-Fe2O3纳米棒薄膜更高的光电化学性能,尤其是在可见光区域;在1.23V vs. RHE(可逆氢电极)下,400nm处的入射光子到电流效率(IPCE)从2.2%提高到了8.4%。莫特-肖特基分析和X射线吸收光谱表明,银掺杂覆盖层不仅增加了近表面区域的载流子密度,还加速了表面氧化反应动力学,协同作用提高了光电化学性能。这些发现为高效太阳能水分解的纳米结构光电极的设计和优化提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3385/4197419/77b5e3c4f64c/srep06627-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验