Han Hyung-Seop, Jun Indong, Seok Hyun-Kwang, Lee Kang-Sik, Lee Kyungwoo, Witte Frank, Mantovani Diego, Kim Yu-Chan, Glyn-Jones Sion, Edwards James R
Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology Seoul 02792 Republic of Korea.
Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS) University of Oxford Oxford OX3 7LD UK.
Adv Sci (Weinh). 2020 Jun 23;7(15):2000800. doi: 10.1002/advs.202000800. eCollection 2020 Aug.
Biodegradable metallic materials represent a potential step-change technology that may revolutionize the treatment of broken bones. Implants made with biodegradable metals are significantly stronger than their polymer counterparts and fully biodegradable in vivo, removing the need for secondary surgery or long-term complications. Here, it is shown how clinically approved Mg alloy promotes improved bone repair using an integrated state of the art fetal mouse metatarsal assay coupled with in vivo preclinical studies, second harmonic generation, secretome array analysis, perfusion bioreactor, and high-resolution 3D confocal imaging of vasculature within skeletal tissue, to reveal a vascular-mediated pro-osteogenic mechanism controlling enhanced tissue regeneration. The optimized mechanical properties and corrosion rate of the Mg alloy lead to a controlled release of metallic Mg, Ca, and Zn ions at a rate that facilitates both angiogenesis and coupled osteogenesis for better bone healing, without causing adverse effects at the implantation site. The findings from this study support ongoing development and refinement of biodegradable metal systems to act as crucial portal technologies with significant potential to improve many clinical applications.
可生物降解金属材料代表了一种潜在的突破性技术,可能会彻底改变骨折治疗方法。用可生物降解金属制成的植入物比其聚合物对应物显著更强,并且在体内完全可生物降解,无需二次手术或长期并发症。在此,展示了临床批准的镁合金如何利用先进的胎儿小鼠跖骨试验与体内临床前研究、二次谐波产生、分泌组阵列分析、灌注生物反应器以及骨骼组织内血管的高分辨率三维共聚焦成像相结合,促进改善骨修复,以揭示一种控制增强组织再生的血管介导的促骨生成机制。镁合金优化的机械性能和腐蚀速率导致金属镁、钙和锌离子以促进血管生成和耦合成骨以实现更好骨愈合的速率可控释放,而不会在植入部位产生不良影响。这项研究的结果支持可生物降解金属系统的持续开发和改进,使其成为具有改善许多临床应用巨大潜力的关键门户技术。