Ernst Martijn P T, Broeders Mike, Herrero-Hernandez Pablo, Oussoren Esmee, van der Ploeg Ans T, Pijnappel W W M Pim
Department of Pediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands.
Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.
Mol Ther Methods Clin Dev. 2020 Jul 3;18:532-557. doi: 10.1016/j.omtm.2020.06.022. eCollection 2020 Sep 11.
We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered to induce the production of fetal hemoglobin. AAV-mediated gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.
我们概述了涉及使用成簇规律间隔短回文重复序列(CRISPR)-CRISPR相关蛋白9(Cas9)、转录激活样效应核酸酶(TALENs)或锌指核酸酶(ZFNs)进行基因编辑的临床试验,并讨论了其潜在机制。在癌症免疫治疗中,基因编辑应用于T细胞、转基因T细胞受体(tTCR)-T细胞或嵌合抗原受体(CAR)-T细胞,以改善多种癌症类型的过继性细胞疗法。这包括敲除免疫检查点调节因子如PD-1、内源性TCR的组成成分和组织相容性白细胞抗原(HLA)复合物,以生成通用的同种异体CAR-T细胞,以及敲除CD7以防止过继性细胞疗法中的自我破坏。在人乳头瘤病毒(HPV)引起的宫颈癌中,使用局部应用的基因编辑机制破坏E6和E7基因。在HIV感染中,破坏CCR5共受体以生成抗HIV的T细胞、CAR-T细胞或造血干细胞。在β地中海贫血和镰状细胞病中,对造血干细胞进行改造以诱导胎儿血红蛋白的产生。腺相关病毒(AAV)介导的基因编辑被应用于利用肝脏在血友病和黏多糖贮积症中全身生产治疗性蛋白质,以及在眼睛中恢复莱伯先天性黑蒙中CEP920基因的剪接。密切关注安全方面并对利益相关者进行教育对于基因编辑技术在临床中的成功应用至关重要。