Department of Mechanical Engineering, University of Delaware , Newark, DE, USA.
Department of Biomedical Engineering, University of Delaware , Newark, DE, USA.
Connect Tissue Res. 2021 Jan;62(1):15-23. doi: 10.1080/03008207.2020.1798943. Epub 2020 Aug 10.
Purpose: Optogenetics is an emerging alternative to traditional electrical stimulation to initiate action potentials in activatable cells both ex vivo and in vivo. Optogenetics has been commonly used in mammalian neurons and more recently, it has been adapted for activation of cardiomyocytes and skeletal muscle. Therefore, the aim of this study was to evaluate the stimulation feasibility and sustain isometric muscle contraction and limit decay for an extended period of time (1s), using non-invasive transdermal light activation of skeletal muscle (triceps surae) in vivo.
We used inducible Cre recombination to target expression of Channelrhodopsin-2 (ChR2(H134R)-EYFP) in skeletal muscle (Acta1-Cre) in mice. Fluorescent imaging confirmed that ChR2 expression is localized in skeletal muscle and does not have specific expression in sciatic nerve branch, therefore, allowing for non-nerve mediated optical stimulation of skeletal muscle. We induced muscle contraction using transdermal exposure to blue light and selected 10 Hz stimulation after controlled optimization experiments to sustain prolonged muscle contraction.
Increasing the stimulation frequency from 10 Hz to 40 Hz increased the muscle contraction decay during prolonged 1s stimulation, highlighting frequency dependency and importance of membrane repolarization for effective light activation. Finally, we showed that optimized pulsed optogenetic stimulation of 10 Hz resulted in comparable ankle torque and contractile functionality to that of electrical stimulation.
Our results demonstrate the feasibility and repeatability of non-invasive optogenetic stimulation of muscle in vivo and highlight optogenetic stimulation as a powerful tool for non-invasive in vivo direct activation of skeletal muscle.
光遗传学是一种新兴的替代方法,可用于在体外和体内激活可激活细胞中的动作电位,这优于传统的电刺激。光遗传学已广泛应用于哺乳动物神经元中,最近,它已被改编用于激活心肌细胞和骨骼肌。因此,本研究旨在评估使用非侵入性透皮光激活骨骼肌(比目鱼肌)在体内进行刺激的可行性,并持续等长肌肉收缩并在较长时间(1 秒)内限制衰减。
我们使用诱导型 Cre 重组将通道视紫红质-2(ChR2(H134R)-EYFP)在骨骼肌(Acta1-Cre)中的表达靶向。荧光成像证实 ChR2 表达定位于骨骼肌,而不在坐骨神经分支中特异性表达,因此允许对骨骼肌进行非神经介导的光学刺激。我们使用透皮暴露于蓝光来诱导肌肉收缩,并在受控优化实验后选择 10 Hz 刺激以维持长时间的肌肉收缩。
增加刺激频率从 10 Hz 增加到 40 Hz 增加了 1 秒刺激期间肌肉收缩的衰减,突出了频率依赖性和膜复极化对有效光激活的重要性。最后,我们表明,优化的 10 Hz 脉冲光遗传刺激导致与电刺激相当的踝关节扭矩和收缩功能。
我们的结果证明了体内非侵入性肌肉光遗传刺激的可行性和可重复性,并强调了光遗传刺激作为一种强大的工具,用于非侵入性体内直接激活骨骼肌。