Institute of Quantum Optics, Gottfried Wilhelm Leibniz University, Hannover, Germany.
Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
J Biophotonics. 2022 Jul;15(7):e202100352. doi: 10.1002/jbio.202100352. Epub 2022 May 1.
All optical approaches to control and read out the electrical activity in a cardiac syncytium can improve our understanding of cardiac electrophysiology. Here, we demonstrate optogenetic stimulation of cardiomyocytes with high spatial precision using light foci generated with a ferroelectric spatial light modulator. Computer generated holograms binarized by bidirectional error diffusion create multiple foci with more even intensity distribution compared with thresholding approach. We evoke the electrical activity of cardiac HL1 cells expressing the channelrhodopsin-2 variant, ChR2(H134R) using single and multiple light foci and at the same time visualize the action potential using a calcium sensitive indicator called Cal-630. We show that localized regions in the cardiac monolayer can be stimulated enabling us to initiate signal propagation from a precise location. Furthermore, we demonstrate that probing the cardiac cells with multiple light foci enhances the excitability of the cardiac network. This approach opens new applications in manipulating and visualizing the electrical activity in a cardiac syncytium.
所有用于控制和读取心脏细胞电活动的光学方法都可以增进我们对心脏电生理学的理解。在这里,我们使用铁电空间光调制器产生的光焦点,展示了具有高空间精度的光遗传学刺激心肌细胞的方法。通过双向误差扩散二值化的计算机生成全息图比阈值处理方法创建了具有更均匀强度分布的多个焦点。我们使用单光焦点和多光焦点来激发表达通道视紫红质-2 变体 ChR2(H134R)的 HL1 细胞的电活动,同时使用称为 Cal-630 的钙敏指示剂来可视化动作电位。我们表明,可以刺激心脏单层中的局部区域,从而使我们能够从精确的位置开始信号传播。此外,我们还证明,用多个光焦点探测心脏细胞可以增强心脏网络的兴奋性。这种方法为在心脏细胞中操纵和可视化电活动开辟了新的应用。