Suppr超能文献

光遗传学与人类心肌细胞电刺激:建模见解

Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.

作者信息

Williams John C, Entcheva Emilia

机构信息

Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York.

Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Institute for Molecular Cardiology, Stony Brook University, Stony Brook, New York.

出版信息

Biophys J. 2015 Apr 21;108(8):1934-45. doi: 10.1016/j.bpj.2015.03.032.

Abstract

Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current-a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.

摘要

光遗传学为操纵膜电压以及触发或改变可兴奋细胞中的动作电位(AP)提供了一种替代电刺激的方法。我们从生物物理和能量学方面比较了细胞对直接电流注入与由基因表达的光敏感离子通道(如通道视紫红质-2,ChR2)介导的光刺激的反应。使用ChR2(H134R突变体)的计算模型,我们表明两种刺激方式在人类心肌细胞中产生形态相似的动作电位,并且电兴奋性和光兴奋性以相似的方式随细胞类型而变化。然而,虽然心室和心房心肌细胞中电刺激的强度-持续时间曲线紧密遵循等效RC电路的理论指数关系,但各自的光强度-持续时间曲线却有显著偏差,表现出更高的非线性。我们将这种偏差的根源追溯到兴奋性电流的波形——由于ChR2动力学和电压依赖性整流,光刺激中产生的非矩形自终止内向电流。使用统一的电荷测量方法来比较电刺激和光刺激所需的能量,我们发现直接电流注入(矩形脉冲)在短脉冲时更有效,而电压介导的负反馈导致ChR2电流自终止,使光刺激在长的低强度脉冲时更有效。这适用于心肌细胞,但不适用于神经元细胞(动作电位短得多)。此外,我们证明了ChR2电流作为内在活性的独特调节剂在细胞特异性方面的应用,从而实现对心房肌动作电位持续时间的光控,对心室肌细胞的控制程度较小。对于自振荡细胞,如浦肯野细胞,极低辐照度的恒定光可用于精细控制振荡频率,而由于电化学限制,恒定电刺激则不可行。我们的分析为设计未来心脏或大脑中新型节能刺激策略提供了见解。

相似文献

1
Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.
Biophys J. 2015 Apr 21;108(8):1934-45. doi: 10.1016/j.bpj.2015.03.032.
2
Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.
PLoS Comput Biol. 2013;9(9):e1003220. doi: 10.1371/journal.pcbi.1003220. Epub 2013 Sep 12.
4
Systemic gene transfer enables optogenetic pacing of mouse hearts.
Cardiovasc Res. 2015 May 1;106(2):338-43. doi: 10.1093/cvr/cvv004. Epub 2015 Jan 12.
7
Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes.
Cardiovasc Res. 2014 Oct 1;104(1):194-205. doi: 10.1093/cvr/cvu179. Epub 2014 Jul 31.
9
Acute Optogenetic Modulation of Cardiac Twitch Dynamics Explored Through Modeling.
J Biomech Eng. 2016 Nov 1;138(11):1110051-11100511. doi: 10.1115/1.4034655.
10
Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
Cardiovasc Res. 2014 Apr 1;102(1):176-87. doi: 10.1093/cvr/cvu037. Epub 2014 Feb 11.

引用本文的文献

1
Heart Scar-In-A-Dish: Tissue Culture Platform to Study Myocardial Infarct Healing In Vitro.
bioRxiv. 2025 Mar 2:2025.02.28.640625. doi: 10.1101/2025.02.28.640625.
2
Bioprinted optoelectronically active cardiac tissues.
Sci Adv. 2025 Jan 24;11(4):eadt7210. doi: 10.1126/sciadv.adt7210.
3
Quasistatic approximation in neuromodulation.
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.
4
Optogenetic Modulation of Arrhythmia Triggers: Proof-of-Concept from Computational Modeling.
Cell Mol Bioeng. 2023 Aug 24;16(4):243-259. doi: 10.1007/s12195-023-00781-z. eCollection 2023 Aug.
5
Quantitative analysis of the optogenetic excitability of CA1 neurons.
Front Comput Neurosci. 2023 Aug 15;17:1229715. doi: 10.3389/fncom.2023.1229715. eCollection 2023.
7
Optogenetically mediated large volume suppression and synchronized excitation of human ventricular cardiomyocytes.
Pflugers Arch. 2023 Dec;475(12):1479-1503. doi: 10.1007/s00424-023-02831-x. Epub 2023 Jul 7.
8
Portable low-cost macroscopic mapping system for all-optical cardiac electrophysiology.
J Biomed Opt. 2023 Jan;28(1):016001. doi: 10.1117/1.JBO.28.1.016001. Epub 2023 Jan 10.
9
Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation.
ACS Nano. 2023 Jan 10;17(1):561-574. doi: 10.1021/acsnano.2c09475. Epub 2022 Dec 22.

本文引用的文献

1
Simulating photon scattering effects in structurally detailed ventricular models using a Monte Carlo approach.
Front Physiol. 2014 Sep 9;5:338. doi: 10.3389/fphys.2014.00338. eCollection 2014.
3
Optical mapping of optogenetically shaped cardiac action potentials.
Sci Rep. 2014 Aug 19;4:6125. doi: 10.1038/srep06125.
4
Toward microendoscopy-inspired cardiac optogenetics in vivo: technical overview and perspective.
J Biomed Opt. 2014 Aug;19(8):080701. doi: 10.1117/1.JBO.19.8.080701.
5
Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes.
Cardiovasc Res. 2014 Oct 1;104(1):194-205. doi: 10.1093/cvr/cvu179. Epub 2014 Jul 31.
7
Cardiac applications of optogenetics.
Prog Biophys Mol Biol. 2014 Aug;115(2-3):294-304. doi: 10.1016/j.pbiomolbio.2014.07.001. Epub 2014 Jul 15.
8
Structure-guided transformation of channelrhodopsin into a light-activated chloride channel.
Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.
9
Modulation of cardiac tissue electrophysiological properties with light-sensitive proteins.
Cardiovasc Res. 2014 Apr 1;102(1):176-87. doi: 10.1093/cvr/cvu037. Epub 2014 Feb 11.
10
Optogenetics' promise: pacing and cardioversion by light?
Future Cardiol. 2014 Jan;10(1):1-4. doi: 10.2217/fca.13.89.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验