Williams John C, Entcheva Emilia
Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York.
Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York; Institute for Molecular Cardiology, Stony Brook University, Stony Brook, New York.
Biophys J. 2015 Apr 21;108(8):1934-45. doi: 10.1016/j.bpj.2015.03.032.
Optogenetics provides an alternative to electrical stimulation to manipulate membrane voltage, and trigger or modify action potentials (APs) in excitable cells. We compare biophysically and energetically the cellular responses to direct electrical current injection versus optical stimulation mediated by genetically expressed light-sensitive ion channels, e.g., Channelrhodopsin-2 (ChR2). Using a computational model of ChR2(H134R mutant), we show that both stimulation modalities produce similar-in-morphology APs in human cardiomyocytes, and that electrical and optical excitability vary with cell type in a similar fashion. However, whereas the strength-duration curves for electrical excitation in ventricular and atrial cardiomyocytes closely follow the theoretical exponential relationship for an equivalent RC circuit, the respective optical strength-duration curves significantly deviate, exhibiting higher nonlinearity. We trace the origin of this deviation to the waveform of the excitatory current-a nonrectangular self-terminating inward current produced in optical stimulation due to ChR2 kinetics and voltage-dependent rectification. Using a unifying charge measure to compare energy needed for electrical and optical stimulation, we reveal that direct electrical current injection (rectangular pulse) is more efficient at short pulses, whereas voltage-mediated negative feedback leads to self-termination of ChR2 current and renders optical stimulation more efficient for long low-intensity pulses. This applies to cardiomyocytes but not to neuronal cells (with much shorter APs). Furthermore, we demonstrate the cell-specific use of ChR2 current as a unique modulator of intrinsic activity, allowing for optical control of AP duration in atrial and, to a lesser degree, in ventricular myocytes. For self-oscillatory cells, such as Purkinje, constant light at extremely low irradiance can be used for fine control of oscillatory frequency, whereas constant electrical stimulation is not feasible due to electrochemical limitations. Our analysis offers insights for designing future new energy-efficient stimulation strategies in heart or brain.
光遗传学为操纵膜电压以及触发或改变可兴奋细胞中的动作电位(AP)提供了一种替代电刺激的方法。我们从生物物理和能量学方面比较了细胞对直接电流注入与由基因表达的光敏感离子通道(如通道视紫红质-2,ChR2)介导的光刺激的反应。使用ChR2(H134R突变体)的计算模型,我们表明两种刺激方式在人类心肌细胞中产生形态相似的动作电位,并且电兴奋性和光兴奋性以相似的方式随细胞类型而变化。然而,虽然心室和心房心肌细胞中电刺激的强度-持续时间曲线紧密遵循等效RC电路的理论指数关系,但各自的光强度-持续时间曲线却有显著偏差,表现出更高的非线性。我们将这种偏差的根源追溯到兴奋性电流的波形——由于ChR2动力学和电压依赖性整流,光刺激中产生的非矩形自终止内向电流。使用统一的电荷测量方法来比较电刺激和光刺激所需的能量,我们发现直接电流注入(矩形脉冲)在短脉冲时更有效,而电压介导的负反馈导致ChR2电流自终止,使光刺激在长的低强度脉冲时更有效。这适用于心肌细胞,但不适用于神经元细胞(动作电位短得多)。此外,我们证明了ChR2电流作为内在活性的独特调节剂在细胞特异性方面的应用,从而实现对心房肌动作电位持续时间的光控,对心室肌细胞的控制程度较小。对于自振荡细胞,如浦肯野细胞,极低辐照度的恒定光可用于精细控制振荡频率,而由于电化学限制,恒定电刺激则不可行。我们的分析为设计未来心脏或大脑中新型节能刺激策略提供了见解。