Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia; Chemistry Department, Faculty of Science, Fayoum University, 63514, Fayoum, Egypt.
Chemistry Department, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia.
J Environ Manage. 2020 Oct 1;271:110961. doi: 10.1016/j.jenvman.2020.110961. Epub 2020 Jun 30.
Herein, novel green/facile approach to synthesize spongy defective zinc oxide nanoparticles (ZnONPs) is presented using for the first time pomegranate seeds molasses as a green capping fuel/reducing mediator during an aqueous solution combustion process. The developed ZnONPs is characterized by UV-Vis. Spectrophotometry and fluorimetry, XRD, Raman spectroscopy, SEM, TEM and BET. Interestingly, pomegranate seeds molasses within a viable content of bio-capping molecules reveal a defective nanoporous ZnO NPs of smaller particle size, greater pore size/volume, and higher surface area compared to the bulky non-biogenic ZnONPs. Moreover, the biosynthesized defective ZnONPs showed narrowed band gap and higher absorption of visible photons that breed higher density of hydroxyl radicals (OH) under Solar-illumination. Even further, the bulk ZnO and the biosynthesized ZnO photocatalysts were examined in photodegrading flumequine (FL) antibiotic. The bulk ZnO gives 41.46% photodegradation efficiency compared to 97.6% for the biosynthesized ZnO. In highly acidic or highly alkaline media, FL photodegradability is greatly retarded. Scavenging experiment infers considerable contribution of holes over electrons in photodegradation reaction. The biosynthesized ZnO shows high durability in FL photodegradation after four reusing cycles. These promising findings highlight new insights for biogenic synthesis of tuned size/controlled morphology semiconductor NPs relevant to environmental remediation applications.
本文首次提出了一种新颖的绿色/简便方法,通过水溶液燃烧法,利用石榴籽蜜饯作为绿色封端燃料/还原介质,合成了具有缺陷的海绵状氧化锌纳米粒子(ZnONPs)。采用 UV-Vis 分光光度法和荧光法、XRD、拉曼光谱、SEM、TEM 和 BET 对所制备的 ZnONPs 进行了表征。有趣的是,在可行的生物封端分子含量内,石榴籽蜜饯揭示了具有缺陷的纳米多孔 ZnO NPs,其粒径更小、孔径/体积更大、比表面积更高,与体积较大的非生物生成的 ZnONPs 相比。此外,所合成的具有缺陷的 ZnONPs 表现出较窄的带隙和更高的可见光吸收,在阳光照射下产生更高密度的羟基自由基(OH)。更进一步,研究了块状 ZnO 和生物合成的 ZnO 光催化剂在光降解氟喹诺酮(FL)抗生素中的应用。块状 ZnO 的光降解效率为 41.46%,而生物合成的 ZnO 的光降解效率为 97.6%。在高度酸性或高度碱性介质中,FL 的光降解性大大降低。清除实验推断出在光降解反应中,空穴对电子有相当大的贡献。生物合成的 ZnO 在 FL 光降解中经过四次重复使用循环后仍具有高耐久性。这些有希望的发现为环境修复应用中相关的调谐尺寸/可控形态半导体 NPs 的生物合成提供了新的见解。