Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.
Angew Chem Int Ed Engl. 2020 Nov 23;59(48):21562-21570. doi: 10.1002/anie.202002649. Epub 2020 Sep 15.
By leveraging the ability of Shewanella oneidensis MR-1 (S. oneidensis MR-1) to anaerobically catabolize lactate through the transfer of electrons to metal minerals for respiration, a lactate-fueled biohybrid (Bac@MnO ) was constructed by modifying manganese dioxide (MnO ) nanoflowers on the S. oneidensis MR-1 surface. The biohybrid Bac@MnO uses decorated MnO nanoflowers as electron receptor and the tumor metabolite lactate as electron donor to make a complete bacterial respiration pathway at the tumor sites, which results in the continuous catabolism of intercellular lactate. Additionally, decorated MnO nanoflowers can also catalyze the conversion of endogenous hydrogen peroxide (H O ) into generate oxygen (O ), which could prevent lactate production by downregulating hypoxia-inducible factor-1α (HIF-1α) expression. As lactate plays a critical role in tumor development, the biohybrid Bac@MnO could significantly inhibit tumor progression by coupling bacteria respiration with tumor metabolism.
通过利用希瓦氏菌属(Shewanella oneidensis MR-1,S. oneidensis MR-1)的能力,通过将电子转移到金属矿物上来厌氧地代谢乳酸以供呼吸,在 S. oneidensis MR-1 表面修饰二氧化锰(MnO )纳米花,构建了一种乳酸燃料生物杂合体(Bac@MnO )。生物杂合体 Bac@MnO 利用修饰的 MnO 纳米花作为电子受体,利用肿瘤代谢物乳酸作为电子供体,在肿瘤部位形成完整的细菌呼吸途径,导致细胞内乳酸的持续代谢。此外,修饰的 MnO 纳米花还可以催化内源性过氧化氢(H O )转化为氧气(O ),通过下调缺氧诱导因子-1α(HIF-1α)的表达来抑制乳酸的产生。由于乳酸在肿瘤发展中起着关键作用,生物杂合体 Bac@MnO 通过将细菌呼吸与肿瘤代谢偶联,可显著抑制肿瘤的进展。
Angew Chem Int Ed Engl. 2020-11-23
Appl Environ Microbiol. 2016-8-15
Appl Environ Microbiol. 2007-11
Appl Environ Microbiol. 2018-11-15
ACS Biomater Sci Eng. 2025-5-12
Theranostics. 2024
Smart Med. 2023-3-10
Bioeng Transl Med. 2024-4-17
Nat Rev Bioeng. 2024-2