Suppr超能文献

受生物启发的超分子胺支架允许形成一维和二维二氧化硅超结构。

Bioinspired Scaffolding by Supramolecular Amines Allows the Formation of One- and Two-Dimensional Silica Superstructures.

机构信息

Laboratory of Self-Organizing Soft Matter, Laboratory of Macromolecular and Organic Chemistry, and, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB, Eindhoven, The Netherlands.

出版信息

Chemistry. 2020 Nov 26;26(66):15330-15336. doi: 10.1002/chem.202003139. Epub 2020 Oct 19.

Abstract

Silica materials attract an increasing amount of interest in (fundamental) research, and find applications in, for example, sensing, catalysis, and drug delivery. As the properties of these (nano)materials not only depend on their chemistry but also their size, shape, and surface area, the controllable synthesis of silica is essential for tailoring the materials to specific applications. Advantageously, bioinspired routes for silica production are environmentally friendly and straightforward since the formation process is spontaneous and proceeds under mild conditions. These strategies mostly employ amine-bearing phosphorylated (bio)polymers. In this work, we expand this principle to supramolecular polymers based on the water-soluble cationic cyanine dye Pinacyanol acetate. Upon assembly in water, these dye molecules form large, polyaminated, supramolecular fibers. The surfaces of these fibers can be used as a scaffold for the condensation of silicic acid. Control over the ionic strength, dye concentration, and silicic acid saturation yielded silica fibers with a diameter of 25 nm and a single, 4 nm pore. Unexpectedly, other unusual superstructures, namely, nummulites and spherulites, are also observed depending on the ionic strength and dye concentration. Transmission and scanning electron microscopy (TEM and SEM) showed that these superstructures are formed by aligned silica fibers. Close examination of the dye scaffold prior silicification using small-angle X-ray scattering (SAXS), and UV/Vis spectroscopy revealed minor influence of the ionic strength and dye concentration on the morphology of the supramolecular scaffold. Total internal reflection fluorescence (TIRF) during silicification unraveled that if the reaction is kept under static conditions, only silica fibers are obtained. Experiments performed on the dye scaffold and silica superstructures evidenced that the marked structural diversity originates from the arrangement of silica/dye fibers. Under these mild conditions, external force fields can profoundly influence the morphology of the produced silica.

摘要

硅材料在(基础)研究中越来越受到关注,并在传感、催化和药物输送等方面得到了应用。由于这些(纳米)材料的性质不仅取决于其化学性质,还取决于其尺寸、形状和表面积,因此可控合成硅材料对于将材料定制为特定应用至关重要。有利的是,生物启发的硅生产途径在环境上是友好的,并且简单直接,因为形成过程是自发的,并在温和的条件下进行。这些策略大多采用含胺的磷酸化(生物)聚合物。在这项工作中,我们将这一原理扩展到基于水溶性阳离子花菁染料 Pinacyanol 醋酸盐的超分子聚合物。在水中组装时,这些染料分子形成大的、多胺化的超分子纤维。这些纤维的表面可以用作硅酸缩合的支架。通过控制离子强度、染料浓度和硅酸饱和度,可以得到直径为 25nm 且具有单个 4nm 孔的硅纤维。出乎意料的是,还观察到其他不寻常的超结构,即钱币石和球晶,这取决于离子强度和染料浓度。透射电子显微镜(TEM)和扫描电子显微镜(SEM)显示,这些超结构是由排列整齐的硅纤维形成的。在硅化之前使用小角 X 射线散射(SAXS)和紫外/可见光谱对染料支架进行仔细检查表明,离子强度和染料浓度对超分子支架的形态影响较小。硅化过程中的全内反射荧光(TIRF)表明,如果反应保持静态,则只能得到硅纤维。在染料支架和硅超结构上进行的实验表明,明显的结构多样性源于硅/染料纤维的排列。在这些温和的条件下,外部力场可以深刻影响所产生的硅的形态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/122f/7756888/1c1cf1be11b8/CHEM-26-15330-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验