Baio Joe E, Zane Ariel, Jaeger Vance, Roehrich Adrienne M, Lutz Helmut, Pfaendtner Jim, Drobny Gary P, Weidner Tobias
School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States.
J Am Chem Soc. 2014 Oct 29;136(43):15134-7. doi: 10.1021/ja5078238. Epub 2014 Oct 17.
Silaffins, long chain polyamines, and other biomolecules found in diatoms are involved in the assembly of a large number of silica nanostructures under mild, ambient conditions. Nanofabrication researchers have sought to mimic the diatom's biosilica production capabilities by engineering proteins to resemble aspects of naturally occurring biomolecules. Such mimics can produce monodisperse biosilica nanospheres, but in vitro production of the variety of intricate biosilica nanostructures that compose the diatom frustule is not yet possible. In this study we demonstrate how LK peptides, composed solely of lysine (K) and leucine (L) amino acids arranged with varying hydrophobic periodicities, initiate the formation of different biosilica nanostructures in vitro. When L and K residues are arranged with a periodicity of 3.5 the α-helical form of the LK peptide produces monodisperse biosilica nanospheres. However, when the LK periodicity is changed to 3.0, corresponding to a 310 helix, the morphology of the nanoparticles changes to elongated rod-like structures. β-strand LK peptides with a periodicity of 2.0 induce wire-like silica morphologies. This study illustrates how the morphology of biosilica can be changed simply by varying the periodicity of polar and nonpolar amino acids.
硅藻中发现的硅蛋白、长链多胺和其他生物分子,在温和的环境条件下参与大量二氧化硅纳米结构的组装。纳米制造研究人员试图通过设计蛋白质使其类似于天然存在的生物分子的某些方面,来模仿硅藻的生物二氧化硅生产能力。这种模拟物可以产生单分散的生物二氧化硅纳米球,但在体外生产构成硅藻壳的各种复杂生物二氧化硅纳米结构目前还不可能。在这项研究中,我们展示了仅由赖氨酸(K)和亮氨酸(L)氨基酸以不同的疏水周期性排列组成的LK肽,如何在体外引发不同生物二氧化硅纳米结构的形成。当L和K残基以3.5的周期性排列时,LK肽的α-螺旋形式产生单分散的生物二氧化硅纳米球。然而,当LK周期性变为3.0(对应于310螺旋)时,纳米颗粒的形态变为细长的棒状结构。具有2.0周期性的β-链LK肽诱导丝状二氧化硅形态。这项研究说明了如何通过改变极性和非极性氨基酸的周期性来简单地改变生物二氧化硅的形态。