Suppr超能文献

硅藻模拟物:通过赖氨酸-亮氨酸肽的可控折叠引导生物二氧化硅纳米颗粒的形成。

Diatom mimics: directing the formation of biosilica nanoparticles by controlled folding of lysine-leucine peptides.

作者信息

Baio Joe E, Zane Ariel, Jaeger Vance, Roehrich Adrienne M, Lutz Helmut, Pfaendtner Jim, Drobny Gary P, Weidner Tobias

机构信息

School of Chemical, Biological, and Environmental Engineering, Oregon State University , Corvallis, Oregon 97331, United States.

出版信息

J Am Chem Soc. 2014 Oct 29;136(43):15134-7. doi: 10.1021/ja5078238. Epub 2014 Oct 17.

Abstract

Silaffins, long chain polyamines, and other biomolecules found in diatoms are involved in the assembly of a large number of silica nanostructures under mild, ambient conditions. Nanofabrication researchers have sought to mimic the diatom's biosilica production capabilities by engineering proteins to resemble aspects of naturally occurring biomolecules. Such mimics can produce monodisperse biosilica nanospheres, but in vitro production of the variety of intricate biosilica nanostructures that compose the diatom frustule is not yet possible. In this study we demonstrate how LK peptides, composed solely of lysine (K) and leucine (L) amino acids arranged with varying hydrophobic periodicities, initiate the formation of different biosilica nanostructures in vitro. When L and K residues are arranged with a periodicity of 3.5 the α-helical form of the LK peptide produces monodisperse biosilica nanospheres. However, when the LK periodicity is changed to 3.0, corresponding to a 310 helix, the morphology of the nanoparticles changes to elongated rod-like structures. β-strand LK peptides with a periodicity of 2.0 induce wire-like silica morphologies. This study illustrates how the morphology of biosilica can be changed simply by varying the periodicity of polar and nonpolar amino acids.

摘要

硅藻中发现的硅蛋白、长链多胺和其他生物分子,在温和的环境条件下参与大量二氧化硅纳米结构的组装。纳米制造研究人员试图通过设计蛋白质使其类似于天然存在的生物分子的某些方面,来模仿硅藻的生物二氧化硅生产能力。这种模拟物可以产生单分散的生物二氧化硅纳米球,但在体外生产构成硅藻壳的各种复杂生物二氧化硅纳米结构目前还不可能。在这项研究中,我们展示了仅由赖氨酸(K)和亮氨酸(L)氨基酸以不同的疏水周期性排列组成的LK肽,如何在体外引发不同生物二氧化硅纳米结构的形成。当L和K残基以3.5的周期性排列时,LK肽的α-螺旋形式产生单分散的生物二氧化硅纳米球。然而,当LK周期性变为3.0(对应于310螺旋)时,纳米颗粒的形态变为细长的棒状结构。具有2.0周期性的β-链LK肽诱导丝状二氧化硅形态。这项研究说明了如何通过改变极性和非极性氨基酸的周期性来简单地改变生物二氧化硅的形态。

相似文献

1
Diatom mimics: directing the formation of biosilica nanoparticles by controlled folding of lysine-leucine peptides.
J Am Chem Soc. 2014 Oct 29;136(43):15134-7. doi: 10.1021/ja5078238. Epub 2014 Oct 17.
2
Reconstituting the formation of hierarchically porous silica patterns using diatom biomolecules.
J Struct Biol. 2018 Oct;204(1):64-74. doi: 10.1016/j.jsb.2018.07.005. Epub 2018 Jul 29.
3
Polycationic peptides from diatom biosilica that direct silica nanosphere formation.
Science. 1999 Nov 5;286(5442):1129-32. doi: 10.1126/science.286.5442.1129.
4
Acetylation dictates the morphology of nanophase biosilica precipitated by a 14-amino acid leucine-lysine peptide.
J Pept Sci. 2017 Feb;23(2):141-147. doi: 10.1002/psc.2960. Epub 2016 Dec 28.
5
Peptides from diatoms and grasses harness phosphate ion binding to silica to help regulate biomaterial structure.
Acta Biomater. 2020 Aug;112:286-297. doi: 10.1016/j.actbio.2020.05.006. Epub 2020 May 17.
7
Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana.
J Biol Chem. 2004 Oct 8;279(41):42993-9. doi: 10.1074/jbc.M407734200. Epub 2004 Aug 10.
8
Silica morphogenesis by lysine-leucine peptides with hydrophobic periodicity.
Langmuir. 2014 Jun 24;30(24):7152-61. doi: 10.1021/la501444t. Epub 2014 Jun 13.
9
Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis.
Science. 2002 Oct 18;298(5593):584-6. doi: 10.1126/science.1076221.
10
Dynamic Stabilization of Expressed Proteins in Engineered Diatom Biosilica Matrices.
Bioconjug Chem. 2016 May 18;27(5):1205-9. doi: 10.1021/acs.bioconjchem.6b00165. Epub 2016 May 5.

引用本文的文献

1
Nanoengineered Silica-Based Biomaterials for Regenerative Medicine.
Int J Mol Sci. 2024 Jun 1;25(11):6125. doi: 10.3390/ijms25116125.
3
Intrinsically Disordered Osteopontin Fragment Orders During Interfacial Calcium Oxalate Mineralization.
Angew Chem Int Ed Engl. 2021 Aug 16;60(34):18577-18581. doi: 10.1002/anie.202105768. Epub 2021 Jul 16.
4
GPCR Genes as Activators of Surface Colonization Pathways in a Model Marine Diatom.
iScience. 2020 Aug 21;23(8):101424. doi: 10.1016/j.isci.2020.101424. Epub 2020 Jul 30.
5
Bioinspired Scaffolding by Supramolecular Amines Allows the Formation of One- and Two-Dimensional Silica Superstructures.
Chemistry. 2020 Nov 26;26(66):15330-15336. doi: 10.1002/chem.202003139. Epub 2020 Oct 19.
6
Otoferlin C2F Domain-Induced Changes in Membrane Structure Observed by Sum Frequency Generation.
Biophys J. 2019 Nov 19;117(10):1820-1830. doi: 10.1016/j.bpj.2019.09.010. Epub 2019 Sep 17.
7
Peptide-Controlled Assembly of Macroscopic Calcium Oxalate Nanosheets.
J Phys Chem Lett. 2019 May 2;10(9):2170-2174. doi: 10.1021/acs.jpclett.9b00684. Epub 2019 Apr 18.
9
Solid state deuterium NMR study of LKα14 peptide aggregation in biosilica.
Biointerphases. 2017 Jun 27;12(2):02D418. doi: 10.1116/1.4986907.

本文引用的文献

1
Silica morphogenesis by lysine-leucine peptides with hydrophobic periodicity.
Langmuir. 2014 Jun 24;30(24):7152-61. doi: 10.1021/la501444t. Epub 2014 Jun 13.
2
Effect of silica particle size on macrophage inflammatory responses.
PLoS One. 2014 Mar 28;9(3):e92634. doi: 10.1371/journal.pone.0092634. eCollection 2014.
3
Multi-technique Characterization of Adsorbed Peptide and Protein Orientation: LK3 and Protein G B1.
J Vac Sci Technol B Nanotechnol Microelectron. 2010 Jul 1;28(4):C5D1. doi: 10.1116/1.3456176.
4
Integrated nanocatalysts.
Acc Chem Res. 2013 Feb 19;46(2):226-35. doi: 10.1021/ar3001662. Epub 2012 Dec 6.
6
Chiral sum frequency generation spectroscopy for characterizing protein secondary structures at interfaces.
J Am Chem Soc. 2011 Jun 1;133(21):8094-7. doi: 10.1021/ja201575e. Epub 2011 May 6.
8
Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13288-93. doi: 10.1073/pnas.1003832107. Epub 2010 Jul 13.
9
Orientation determination of interfacial beta-sheet structures in situ.
J Phys Chem B. 2010 Jul 1;114(25):8291-300. doi: 10.1021/jp102343h.
10
Peptide-based methods for the preparation of nanostructured inorganic materials.
Angew Chem Int Ed Engl. 2010 Mar 8;49(11):1924-42. doi: 10.1002/anie.200903572.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验