Transversal Activities in Applied Genomics (TAG), Sciensano, 1050 Brussels, Belgium.
IDLab, Department of Information Technology, Ghent University, IMEC, 9052 Ghent, Belgium.
Int J Mol Sci. 2020 Aug 8;21(16):5688. doi: 10.3390/ijms21165688.
Culture-independent diagnostics, such as metagenomic shotgun sequencing of food samples, could not only reduce the turnaround time of samples in an outbreak investigation, but also allow the detection of multi-species and multi-strain outbreaks. For successful foodborne outbreak investigation using a metagenomic approach, it is, however, necessary to bioinformatically separate the genomes of individual strains, including strains belonging to the same species, present in a microbial community, which has up until now not been demonstrated for this application. The current work shows the feasibility of strain-level metagenomics of enriched food matrix samples making use of data analysis tools that classify reads against a sequence database. It includes a brief comparison of two database-based read classification tools, Sigma and Sparse, using a mock community obtained by in vitro spiking minced meat with a Shiga toxin-producing (STEC) isolate originating from a described outbreak. The more optimal tool Sigma was further evaluated using in silico simulated metagenomic data to explore the possibilities and limitations of this data analysis approach. The performed analysis allowed us to link the pathogenic strains from food samples to human isolates previously collected during the same outbreak, demonstrating that the metagenomic approach could be applied for the rapid source tracking of foodborne outbreaks. To our knowledge, this is the first study demonstrating a data analysis approach for detailed characterization and phylogenetic placement of multiple bacterial strains of one species from shotgun metagenomic WGS data of an enriched food sample.
基于宏基因组的无培养诊断方法,如对食物样本进行宏基因组鸟枪法测序,不仅可以缩短暴发调查中样本的周转时间,还可以检测到多种和多株病原体暴发。然而,要成功地利用宏基因组方法进行食源性暴发调查,就必须在生物信息学上分离出微生物群落中存在的个体菌株的基因组,包括属于同一物种的菌株,这在该应用中至今尚未得到证明。目前的工作展示了对富集食物基质样本进行菌株水平宏基因组学的可行性,使用了针对序列数据库对读取进行分类的数据分析工具。它包括了使用来自描述暴发的产志贺毒素大肠杆菌 (STEC) 分离株对体外接种碎肉的模拟群落对两种基于数据库的读取分类工具 Sigma 和 Sparse 进行的简要比较。进一步使用模拟宏基因组数据对更优的工具 Sigma 进行了评估,以探索这种数据分析方法的可能性和局限性。所进行的分析使我们能够将食物样本中的致病菌株与同一暴发期间之前收集的人类分离株联系起来,证明了宏基因组方法可用于快速追踪食源性暴发的源头。据我们所知,这是第一项展示了一种数据分析方法的研究,该方法可从富集食物样本的宏基因组 WGS 数据中对一个物种的多个细菌菌株进行详细特征描述和系统发育定位。