Suppr超能文献

基于深度学习分析和颜色层特征分析算法的癌细胞核图像自动检测方法。

Automatic Detection Method for Cancer Cell Nucleus Image Based on Deep-Learning Analysis and Color Layer Signature Analysis Algorithm.

机构信息

Department of Otorhinolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.

Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan.

出版信息

Sensors (Basel). 2020 Aug 7;20(16):4409. doi: 10.3390/s20164409.

Abstract

Exploring strategies to treat cancer has always been an aim of medical researchers. One of the available strategies is to use targeted therapy drugs to make the chromosomes in cancer cells unstable such that cell death can be induced, and the elimination of highly proliferative cancer cells can be achieved. Studies have reported that the mitotic defects and micronuclei in cancer cells can be used as biomarkers to evaluate the instability of the chromosomes. Researchers use these two biomarkers to assess the effects of drugs on eliminating cancer cells. However, manual work is required to count the number of cells exhibiting mitotic defects and micronuclei either directly from the viewing window of a microscope or from an image, which is tedious and creates errors. Therefore, this study aims to detect cells with mitotic defects and micronuclei by applying an approach that can automatically count the targets. This approach integrates the application of a convolutional neural network for normal cell identification and the proposed color layer signature analysis (CLSA) to spot cells with mitotic defects and micronuclei. This approach provides a method for researchers to detect colon cancer cells in an accurate and time-efficient manner, thereby decreasing errors and the processing time. The following sections will illustrate the methodology and workflow design of this study, as well as explain the practicality of the experimental comparisons and the results that were used to validate the practicality of this algorithm.

摘要

探索治疗癌症的策略一直是医学研究人员的目标之一。其中一种可用的策略是使用靶向治疗药物使癌细胞的染色体不稳定,从而诱导细胞死亡,并消除高度增殖的癌细胞。研究报告称,癌细胞的有丝分裂缺陷和微核可以作为评估染色体不稳定性的生物标志物。研究人员使用这两个生物标志物来评估药物对消除癌细胞的效果。然而,直接从显微镜的观察窗口或从图像中手动计数表现出有丝分裂缺陷和微核的细胞数量既繁琐又容易出错。因此,本研究旨在通过应用一种可以自动计数目标的方法来检测有丝分裂缺陷和微核的细胞。该方法集成了卷积神经网络在正常细胞识别中的应用和提出的颜色层特征分析(CLSA)来发现有丝分裂缺陷和微核的细胞。该方法为研究人员提供了一种准确、高效的方法来检测结肠癌细胞,从而减少错误和处理时间。以下各节将说明本研究的方法和工作流程设计,并解释实验比较的实用性以及用于验证该算法实用性的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89d3/7472205/3eb4bfe24fd5/sensors-20-04409-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验