Suppr超能文献

一种严格无监督的 HEp-2 细胞图像分类深度学习方法。

A Strictly Unsupervised Deep Learning Method for HEp-2 Cell Image Classification.

机构信息

Department of IT Convergence and Application Engineering, Pukyong National University, Busan 48513, Korea.

Department of Computer Engineering, Dong-A University, Busan 49315, Korea.

出版信息

Sensors (Basel). 2020 May 9;20(9):2717. doi: 10.3390/s20092717.

Abstract

Classifying the images that portray the Human Epithelial cells of type 2 (HEp-2) represents one of the most important steps in the diagnosis procedure of autoimmune diseases. Performing this classification manually represents an extremely complicated task due to the heterogeneity of these cellular images. Hence, an automated classification scheme appears to be necessary. However, the majority of the available methods prefer to utilize the supervised learning approach for this problem. The need for thousands of images labelled manually can represent a difficulty with this approach. The first contribution of this work is to demonstrate that classifying HEp-2 cell images can also be done using the unsupervised learning paradigm. Unlike the majority of the existing methods, we propose here a deep learning scheme that performs both the feature extraction and the cells' discrimination through an end-to-end unsupervised paradigm. We propose the use of a deep convolutional autoencoder (DCAE) that performs feature extraction via an encoding-decoding scheme. At the same time, we embed in the network a clustering layer whose purpose is to automatically discriminate, during the feature learning process, the latent representations produced by the DCAE. Furthermore, we investigate how the quality of the network's reconstruction can affect the quality of the produced representations. We have investigated the effectiveness of our method on some benchmark datasets and we demonstrate here that the unsupervised learning, when done properly, performs at the same level as the actual supervised learning-based state-of-the-art methods in terms of accuracy.

摘要

对描绘 2 型人上皮细胞 (HEp-2) 的图像进行分类是自身免疫性疾病诊断过程中最重要的步骤之一。由于这些细胞图像的异质性,手动进行此类分类任务极其复杂。因此,需要一种自动化的分类方案。然而,大多数现有的方法都倾向于使用监督学习方法来解决这个问题。由于需要数千张手动标记的图像,因此这种方法可能存在困难。这项工作的第一个贡献是证明使用无监督学习范例也可以对 HEp-2 细胞图像进行分类。与大多数现有方法不同,我们在这里提出了一种深度学习方案,通过端到端的无监督范例同时执行特征提取和细胞识别。我们建议使用深度卷积自动编码器 (DCAE) 通过编码-解码方案进行特征提取。同时,我们在网络中嵌入一个聚类层,其目的是在特征学习过程中自动区分 DCAE 生成的潜在表示。此外,我们研究了网络重构的质量如何影响生成表示的质量。我们已经在一些基准数据集上调查了我们方法的有效性,并在此证明,在适当的情况下,无监督学习在准确性方面与实际基于监督学习的最先进方法的表现相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03b3/7249201/2e6fc08a227c/sensors-20-02717-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验