Department of Automatic Control and Robotics, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland.
Chair of Pathomorphology, Jagiellonian University Medical College, ul. Grzegorzecka 16, 31-531 Krakow, Poland.
Sensors (Basel). 2020 Mar 11;20(6):1546. doi: 10.3390/s20061546.
In this research, we present a semi-supervised segmentation solution using convolutional autoencoders to solve the problem of segmentation tasks having a small number of ground-truth images. We evaluate the proposed deep network architecture for the detection of nests of nevus cells in histopathological images of skin specimens is an important step in dermatopathology. The diagnostic criteria based on the degree of uniformity and symmetry of border irregularities are particularly vital in dermatopathology, in order to distinguish between benign and malignant skin lesions. However, to the best of our knowledge, it is the first described method to segment the nests region. The novelty of our approach is not only the area of research, but, furthermore, we address a problem with a small ground-truth dataset. We propose an effective computer-vision based deep learning tool that can perform the nests segmentation based on an autoencoder architecture with two learning steps. Experimental results verified the effectiveness of the proposed approach and its ability to segment nests areas with Dice similarity coefficient 0.81, sensitivity 0.76, and specificity 0.94, which is a state-of-the-art result.
在这项研究中,我们提出了一种使用卷积自动编码器的半监督分割解决方案,以解决分割任务中只有少量真实图像的问题。我们评估了所提出的深度网络架构在检测皮肤标本组织病理学图像中的痣细胞巢中的应用,这是皮肤病理学中的一个重要步骤。基于边界不规则性均匀性和对称性的诊断标准在皮肤病理学中尤为重要,以便区分良性和恶性皮肤病变。然而,据我们所知,这是首次描述的用于分割巢区域的方法。我们的方法的新颖之处不仅在于研究领域,而且还解决了一个真实数据集较小的问题。我们提出了一种有效的基于计算机视觉的深度学习工具,该工具可以基于具有两个学习步骤的自动编码器架构执行巢分割。实验结果验证了所提出方法的有效性及其分割巢区域的能力,其 Dice 相似系数为 0.81,灵敏度为 0.76,特异性为 0.94,这是一项先进的结果。