Suppr超能文献

光遗传学控制异源代谢。

Optogenetic Control of Heterologous Metabolism in .

机构信息

Department of Chemical and Biological Engineering & School of Biomedical Engineering, The University of British Columbia, Vancouver, V6T 1Z3, Canada.

出版信息

ACS Synth Biol. 2020 Sep 18;9(9):2291-2300. doi: 10.1021/acssynbio.9b00454. Epub 2020 Aug 20.

Abstract

Multiobjective optimization of microbial chassis for the production of xenobiotic compounds requires the implementation of metabolic control strategies that permit dynamic distribution of cellular resources between biomass and product formation. We addressed this need in a previous study by engineering the T7 RNA polymerase to be thermally responsive. The modified polymerase is activated only after the temperature of the host cell falls below 18 °C, and cells that employ the protein to transcribe the heterologous lycopene biosynthetic pathway exhibit impressive improvements in productivity. We have expanded our toolbox of metabolic switches in the current study by engineering a version of the T7 RNA polymerase that drives the transition between biomass and product formation upon stimulation with red light. The engineered polymerase is expressed as two distinct polypeptide chains. Each chain comprises one of two photoactive components from , phytochrome B (PhyB) and phytochrome-integrating factor 3 (PIF3), as well as the N- or C-terminus domains of both, the vacuolar ATPase subunit (VMA) intein of and the polymerase. Red light drives photodimerization of PhyB and PIF3, which then brings together the N- and C-terminus domains of the VMA intein. Trans-splicing of the intein follows suit and produces an active form of the polymerase that subsequently transcribes any sequence that is under the control of a T7 promoter. The photodimerization also involves a third element, the cyanobacterial chromophore phycocyanobilin (PCB), which too is expressed heterologously by . We deployed this version of the T7 RNA polymerase to control the production of lycopene in and observed tight control of pathway expression. We tested a variety of expression configurations to identify one that imposes the lowest metabolic burden on the strain, and we subsequently optimized key parameters such as the source, moment, and duration of photostimulation. We also identified targets for future refinement of the circuit. In summary, our work is a significant advance for the field and greatly expands on previous work by other groups that have used optogenetic circuits to control heterologous metabolism in prokaryotic hosts.

摘要

微生物底盘生产外来化合物的多目标优化需要实施代谢控制策略,以允许细胞资源在生物量和产物形成之间动态分配。在之前的研究中,我们通过对 T7 RNA 聚合酶进行热响应工程来满足这一需求。只有当宿主细胞的温度低于 18°C 时,修饰后的聚合酶才会被激活,并且利用该蛋白质转录异源番茄红素生物合成途径的细胞在生产力方面表现出显著的提高。在当前的研究中,我们通过工程改造一种 T7 RNA 聚合酶版本,使其在受到红光刺激时在生物量和产物形成之间转换,从而扩展了我们的代谢开关工具箱。该工程聚合酶由两个不同的多肽链组成。每条链包含来自 的两个光活性成分之一,即光敏色素 B (PhyB) 和光敏色素整合因子 3 (PIF3),以及 vacuolar ATPase 亚基 (VMA) 内含子的 N 或 C 末端结构域。红光驱动 PhyB 和 PIF3 的光二聚化,然后将 VMA 内含子的 N 和 C 末端结构域聚集在一起。紧随其后的是内含子的转剪接,产生一种活性形式的聚合酶,随后转录任何受 T7 启动子控制的序列。光二聚化还涉及第三个元素,即蓝细菌发色团藻胆素(PCB),它也由 异源表达。我们使用这种 T7 RNA 聚合酶来控制 中番茄红素的生产,并观察到途径表达的紧密控制。我们测试了多种表达配置,以确定对菌株代谢负担最低的一种,随后我们优化了关键参数,如光刺激的来源、时刻和持续时间。我们还确定了电路未来改进的目标。总之,我们的工作是该领域的重大进展,极大地扩展了其他小组以前的工作,他们使用光遗传学电路来控制原核宿主中的异源代谢。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验