Reijonen Jusa, Pitkänen Minna, Kallioniemi Elisa, Mohammadi Ali, Ilmoniemi Risto J, Julkunen Petro
Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
J Neurosci Methods. 2020 Dec 1;346:108893. doi: 10.1016/j.jneumeth.2020.108893. Epub 2020 Aug 10.
Motor mapping with navigated transcranial magnetic stimulation (nTMS) requires defining a "hotspot", a stimulation site consistently producing the highest-amplitude motor-evoked potentials (MEPs). The exact location of the hotspot is difficult to determine, and the spatial extent of high-amplitude MEPs usually remains undefined due to MEP variability and the spread of the TMS-induced electric field (E-field). Therefore, here we aim to define the hotspot as a sub-region of a motor map.
We analyzed MEP amplitude distributions in motor mappings of 30 healthy subjects in two orthogonal directions on the motor cortex. Based on the widths of these distributions, the hotspot extent was estimated as an elliptic area. In addition, E-field distributions induced by motor map edge stimulations were simulated for ten subjects, and the E-field attenuation was analyzed to obtain another estimate for hotspot extent.
The median MEP-based hotspot area was 13 mm (95% confidence interval (CI) = [10, 18] mm). The mean E-field-based hotspot area was 26 mm (95% CI = [13, 38] mm).
In contrast to the conventional hotspot, the new definition considers its spatial extent, indicating the most easily excited area where subsequent nTMS stimuli should be targeted for maximal response. The E-field-based hotspot provides an estimate for the extent of cortical structures where the E-field is close to its maximum.
The nTMS hotspot should be considered as an area rather than a single qualitatively defined spot due to MEP variability and E-field spread.
使用导航经颅磁刺激(nTMS)进行运动功能区定位需要确定一个“热点”,即一个能持续产生最高波幅运动诱发电位(MEP)的刺激部位。热点的确切位置很难确定,而且由于MEP的变异性和经颅磁刺激诱发电场(E场)的扩散,高波幅MEP的空间范围通常仍不明确。因此,我们旨在将热点定义为运动功能区图谱的一个子区域。
我们分析了30名健康受试者在运动皮层上两个相互垂直方向的运动功能区定位中MEP波幅的分布情况。根据这些分布的宽度,将热点范围估计为一个椭圆形区域。此外,对10名受试者模拟了运动功能区图谱边缘刺激诱发的E场分布,并分析了E场衰减情况以获得热点范围的另一种估计。
基于MEP的热点面积中位数为13平方毫米(95%置信区间(CI)=[10, 18]平方毫米)。基于E场的热点平均面积为26平方毫米(95%CI = [13, 38]平方毫米)。
与传统热点不同,新定义考虑了其空间范围,表明了后续nTMS刺激应针对以获得最大反应的最易兴奋区域。基于E场的热点为E场接近最大值的皮质结构范围提供了一个估计。
由于MEP的变异性和E场的扩散,nTMS热点应被视为一个区域而非单个定性定义的点。