Kurumbang Nagendra P, Vera Jessica M, Hebert Alexander S, Coon Joshua J, Landick Robert
DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
PLoS One. 2020 Aug 14;15(8):e0226235. doi: 10.1371/journal.pone.0226235. eCollection 2020.
Plant-derived fuels and chemicals from renewable biomass have significant potential to replace reliance on petroleum and improve global carbon balance. However, plant biomass contains significant fractions of oligosaccharides that are not usable natively by many industrial microorganisms, including Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis. Even after chemical or enzymatic hydrolysis, some carbohydrate remains as non-metabolizable oligosaccharides (e.g., cellobiose or longer cellulose-derived oligomers), thus reducing the efficiency of conversion to useful products. To begin to address this problem for Z. mobilis, we engineered a strain (Z. mobilis GH3) that expresses a glycosyl hydrolase (GH) with β-glucosidase activity from a related α-proteobacterial species, Caulobacter crescentus, and subjected it to an adaptation in cellobiose medium. Growth on cellobiose was achieved after a prolonged lag phase in cellobiose medium that induced changes in gene expression and cell composition, including increased expression and extracellular release of GH. These changes were reversible upon growth in glucose-containing medium, meaning they did not result from genetic mutation but could be retained upon transfer of cells to fresh cellobiose medium. After adaptation to cellobiose, our GH-expressing strain was able to convert about 50% of cellobiose to glucose within 24 h and use it for growth and ethanol production. Alternatively, pre-growth of Z. mobilis GH3 in sucrose medium enabled immediate growth on cellobiose. Proteomic analysis of cellobiose- and sucrose-adapted strains revealed upregulation of secretion-, transport-, and outer membrane-related proteins, which may aid release or surface display of GHs, entry of cellobiose into the periplasm, or both. Our two key findings are that Z. mobilis can be reprogrammed to grow on cellobiose as a sole carbon source and that this reprogramming is related to a natural response of Z. mobilis to sucrose that promotes sucrase production.
来自可再生生物质的植物源燃料和化学品具有巨大潜力,可取代对石油的依赖并改善全球碳平衡。然而,植物生物质中含有大量寡糖,许多工业微生物,包括大肠杆菌、酿酒酵母和运动发酵单胞菌,天然情况下无法利用这些寡糖。即使经过化学或酶水解,一些碳水化合物仍以不可代谢的寡糖形式存在(例如纤维二糖或更长的纤维素衍生寡聚物),从而降低了转化为有用产品的效率。为了开始解决运动发酵单胞菌的这个问题,我们构建了一个菌株(运动发酵单胞菌GH3),它表达来自相关α-变形杆菌新月柄杆菌的具有β-葡萄糖苷酶活性的糖基水解酶(GH),并使其在纤维二糖培养基中进行适应性培养。在纤维二糖培养基中经过长时间的延迟期后,运动发酵单胞菌GH3实现了在纤维二糖上生长,这一过程诱导了基因表达和细胞组成的变化,包括GH表达增加和细胞外释放。当在含葡萄糖的培养基中生长时,这些变化是可逆的,这意味着它们不是由基因突变引起的,而是在将细胞转移到新鲜纤维二糖培养基后可以保留下来。适应纤维二糖后,我们的表达GH的菌株能够在24小时内将约50%的纤维二糖转化为葡萄糖,并将其用于生长和乙醇生产。或者,运动发酵单胞菌GH3在蔗糖培养基中预培养能够使其在纤维二糖上立即生长。对适应纤维二糖和蔗糖的菌株进行蛋白质组学分析发现,与分泌、转运和外膜相关的蛋白质上调,这可能有助于GH的释放或表面展示、纤维二糖进入周质或两者兼有。我们的两个关键发现是,运动发酵单胞菌可以被重新编程以纤维二糖作为唯一碳源生长,并且这种重新编程与运动发酵单胞菌对蔗糖的自然反应有关,该反应促进蔗糖酶的产生。