Suppr超能文献

基于高分辨率网络数据的贝叶斯流行病学建模。

Bayesian epidemiological modeling over high-resolution network data.

机构信息

Division of Scientific Computing, Department of Information Technology, Uppsala University, SE-751 05 Uppsala, Sweden.

Department of Disease Control and Epidemiology, National Veterinary Institute, SE-751 89 Uppsala, Sweden.

出版信息

Epidemics. 2020 Sep;32:100399. doi: 10.1016/j.epidem.2020.100399. Epub 2020 Jul 2.

Abstract

Mathematical epidemiological models have a broad use, including both qualitative and quantitative applications. With the increasing availability of data, large-scale quantitative disease spread models can nowadays be formulated. Such models have a great potential, e.g., in risk assessments in public health. Their main challenge is model parameterization given surveillance data, a problem which often limits their practical usage. We offer a solution to this problem by developing a Bayesian methodology suitable to epidemiological models driven by network data. The greatest difficulty in obtaining a concentrated parameter posterior is the quality of surveillance data; disease measurements are often scarce and carry little information about the parameters. The often overlooked problem of the model's identifiability therefore needs to be addressed, and we do so using a hierarchy of increasingly realistic known truth experiments. Our proposed Bayesian approach performs convincingly across all our synthetic tests. From pathogen measurements of shiga toxin-producing Escherichia coli O157 in Swedish cattle, we are able to produce an accurate statistical model of first-principles confronted with data. Within this model we explore the potential of a Bayesian public health framework by assessing the efficiency of disease detection and -intervention scenarios.

摘要

数学流行病学模型用途广泛,包括定性和定量应用。随着数据的日益普及,如今可以制定大规模的定量疾病传播模型。这些模型具有很大的潜力,例如在公共卫生风险评估中。它们的主要挑战是基于监测数据进行模型参数化,这一问题常常限制了它们的实际应用。我们通过开发一种适合网络数据驱动的流行病学模型的贝叶斯方法来解决这个问题。获得集中参数后验的最大困难是监测数据的质量;疾病测量通常很少,并且携带的关于参数的信息很少。因此,通常被忽视的模型可识别性问题需要解决,我们使用一系列越来越现实的已知真实实验来解决这个问题。我们提出的贝叶斯方法在所有的合成测试中都表现出色。通过对瑞典牛中产志贺毒素大肠杆菌 O157 的病原体测量,我们能够针对数据建立一个准确的、基于第一原理的统计模型。在这个模型中,我们通过评估疾病检测和干预场景的效率,探索了贝叶斯公共卫生框架的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验