Suppr超能文献

基于正则化的高维广义线性模型自适应检验

A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models.

作者信息

Wu Chong, Xu Gongjun, Shen Xiaotong, Pan Wei

机构信息

Department of Statistics, Florida State University, FL, USA.

Department of Statistics, University of Michigan, MI, USA.

出版信息

J Mach Learn Res. 2020;21. Epub 2020 Jul 26.

Abstract

In spite of its urgent importance in the era of big data, testing high-dimensional parameters in generalized linear models (GLMs) in the presence of high-dimensional nuisance parameters has been largely under-studied, especially with regard to constructing powerful tests for general (and unknown) alternatives. Most existing tests are powerful only against certain alternatives and may yield incorrect Type I error rates under high-dimensional nuisance parameter situations. In this paper, we propose the adaptive interaction sum of powered score (aiSPU) test in the framework of penalized regression with a non-convex penalty, called truncated Lasso penalty (TLP), which can maintain correct Type I error rates while yielding high statistical power across a wide range of alternatives. To calculate its -values analytically, we derive its asymptotic null distribution. Via simulations, its superior finite-sample performance is demonstrated over several representative existing methods. In addition, we apply it and other representative tests to an Alzheimer's Disease Neuroimaging Initiative (ADNI) data set, detecting possible gene-gender interactions for Alzheimer's disease. We also put R package "" implementing the proposed test on GitHub.

摘要

尽管在大数据时代其具有紧迫性,但在存在高维干扰参数的情况下,对广义线性模型(GLMs)中的高维参数进行检验在很大程度上仍未得到充分研究,特别是在构建针对一般(且未知)备择假设的强大检验方面。大多数现有检验仅对某些备择假设有效,并且在高维干扰参数情况下可能会产生错误的第一类错误率。在本文中,我们在具有非凸惩罚(称为截断套索惩罚(TLP))的惩罚回归框架下提出了自适应幂得分交互和(aiSPU)检验,该检验可以保持正确的第一类错误率,同时在广泛的备择假设范围内具有高统计功效。为了通过解析计算其p值,我们推导了其渐近零分布。通过模拟,证明了它相对于几种有代表性的现有方法具有优越的有限样本性能。此外,我们将其与其他代表性检验应用于阿尔茨海默病神经影像倡议(ADNI)数据集,检测阿尔茨海默病可能的基因 - 性别相互作用。我们还在GitHub上发布了实现所提出检验的R包“”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/faf0/7425805/7314972fd3be/nihms-1605534-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验