Wang Peng, Lombi Enzo, Sun Shengkai, Scheckel Kirk G, Malysheva Anzhela, McKenna Brigid A, Menzies Neal W, Zhao Fang-Jie, Kopittke Peter M
Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, Jiangsu 210095, China.
The University of Queensland, School of Agriculture and Food Sciences, St. Lucia, Queensland 4072, Australia.
Environ Sci Nano. 2017 Feb 1;4(2):448-460.
Silver nanoparticles (Ag-NPs) are used in a wide range of everyday products, leading to increasing concerns regarding their accumulation in soils and subsequent impact on plants. Using single particle inductively coupled plasma mass spectrometry (spICP-MS) and synchrotron-based techniques including X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM), we characterized the uptake, speciation, and translocation of insoluble AgS-NPs (an environmentally-relevant form of Ag-NPs in soils) within two plant species, a monocot and a dicot. Exposure to 10 mg Ag L as AgS-NPs for one week resulted in a substantial increase in leaf Ag concentrations (3.8 to 5.8 μg Ag g dry mass). Examination using XAS revealed that most of the Ag was present as AgS (>91%). Furthermore, analyses using spICP-MS confirmed that these AgS particles within the leaves had a markedly similar size distribution to those supplied within the hydroponic solution. These observations, for the first time, provide direct evidence that plants take up AgS-NPs without a marked selectivity in regard to particle size and without substantial transformation (dissolution or aggregation) during translocation from roots to shoots. Furthermore, after uptake, these AgS-NPs reduced growth, partially due to the solubilisation of Ag , which resulted in an upregulation of genes involved in the ethylene signalling pathway. Additionally, the upregulation of the plant defense system as a result of AgS-NPs exposure may have contributed to the decrease in plant growth. These results highlight the risks associated with Ag-NP accumulation in plants and subsequent trophic transfer the food chain.
银纳米颗粒(Ag-NPs)被广泛应用于各类日常用品中,这引发了人们对其在土壤中积累以及随后对植物产生影响的日益关注。我们使用单颗粒电感耦合等离子体质谱法(spICP-MS)以及基于同步加速器的技术,包括X射线吸收光谱法(XAS)和X射线荧光显微镜法(XFM),对不溶性AgS-NPs(土壤中与环境相关的一种Ag-NPs形式)在一种单子叶植物和一种双子叶植物这两种植物物种中的吸收、形态和转运进行了表征。以AgS-NPs形式暴露于10 mg Ag L 一周导致叶片银浓度大幅增加(从3.8至5.8 μg Ag g干重)。使用XAS进行的检测表明,大部分银以AgS的形式存在(>91%)。此外,使用spICP-MS进行的分析证实,叶片内的这些AgS颗粒与水培溶液中提供的颗粒具有明显相似的尺寸分布。这些观察结果首次提供了直接证据,表明植物吸收AgS-NPs时对颗粒大小没有明显的选择性,并且在从根向地上部转运过程中没有发生实质性的转化(溶解或聚集)。此外,吸收后,这些AgS-NPs抑制了生长,部分原因是银的溶解,这导致了乙烯信号通路相关基因的上调。此外,由于暴露于AgS-NPs而导致的植物防御系统上调可能也导致了植物生长的下降。这些结果突出了Ag-NP在植物中积累以及随后在食物链中营养转移所带来的风险。