Suppr超能文献

用于观察通过油包水乳液转移法制备的基于脂质体的细胞模型的灌注室。

Perfusion Chamber for Observing a Liposome-Based Cell Model Prepared by a Water-in-Oil Emulsion Transfer Method.

作者信息

Sugiyama Hironori, Osaki Toshihisa, Takeuchi Shoji, Toyota Taro

机构信息

Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan.

出版信息

ACS Omega. 2020 Jul 30;5(31):19429-19436. doi: 10.1021/acsomega.0c01371. eCollection 2020 Aug 11.

Abstract

For the construction of a chemical model of contemporary living cells, the so-called water-in-oil emulsion transfer (WOET) method has drawn much attention as one of the promising preparation protocols for cell-sized liposomes encapsulating macromolecules and even micrometer-sized colloidal particles in high yields. Combining the throughput and accuracy of the observation is the key to developing a synthetic approach based on the liposomes prepared by the WOET method. Recent advances in microfluidic technology can provide a solution. By means of surface modification of a poly(dimethylsiloxane)-type microfluidic device integrating size-sorting and trapping modules, here, we enabled a simultaneous direct observation of the liposomes with a narrow size distribution, which were prepared by the WOET method. As a demonstration, we evaluated the variance of encapsulation of polystyrene colloidal particles and water permeability of the cell-sized liposomes prepared by the WOET method in the device. Since the liposomes prepared by the WOET method are useful for constructing cell models with an easy protocol, the current system will lead to a critical development of not only supramolecular chemistry and soft matter physics but also synthetic biology.

摘要

对于构建当代活细胞的化学模型而言,所谓的油包水乳液转移(WOET)方法作为一种颇具前景的制备方案,已备受关注。该方法能够高产率地制备包封大分子乃至微米级胶体粒子的细胞大小的脂质体。将观察的通量与准确性相结合,是开发基于WOET方法制备的脂质体的合成方法的关键。微流控技术的最新进展能够提供一种解决方案。在此,通过对集成了尺寸分选和捕获模块的聚二甲基硅氧烷型微流控装置进行表面改性,我们实现了对通过WOET方法制备的、具有窄尺寸分布的脂质体的同步直接观察。作为演示,我们评估了在该装置中通过WOET方法制备的细胞大小的脂质体对聚苯乙烯胶体粒子的包封差异以及水渗透性。由于通过WOET方法制备的脂质体对于以简便方案构建细胞模型很有用,当前系统不仅将推动超分子化学和软物质物理学的关键发展,还将推动合成生物学的关键发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6eb2/7424586/acc1661be119/ao0c01371_0001.jpg

相似文献

1
Perfusion Chamber for Observing a Liposome-Based Cell Model Prepared by a Water-in-Oil Emulsion Transfer Method.
ACS Omega. 2020 Jul 30;5(31):19429-19436. doi: 10.1021/acsomega.0c01371. eCollection 2020 Aug 11.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Microrail-assisted liposome trapping and aligning in microfluidic channels.
RSC Adv. 2024 Jun 5;14(25):18003-18010. doi: 10.1039/d4ra02094d. eCollection 2024 May 28.
5
High throughput single-cell and multiple-cell micro-encapsulation.
J Vis Exp. 2012 Jun 15(64):e4096. doi: 10.3791/4096.
7
On-chip microfluidic production of cell-sized liposomes.
Nat Protoc. 2018 May;13(5):856-874. doi: 10.1038/nprot.2017.160. Epub 2018 Mar 29.
8
Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.
Anal Chem. 2016 Jan 19;88(2):1111-6. doi: 10.1021/acs.analchem.5b03772. Epub 2015 Dec 31.

引用本文的文献

2
A Novel Device for Micro-Droplets Generation Based on the Stepwise Membrane Emulsification Principle.
Micromachines (Basel). 2024 Aug 31;15(9):1118. doi: 10.3390/mi15091118.
4
Methods to Measure Water Permeability.
Adv Exp Med Biol. 2023;1398:343-361. doi: 10.1007/978-981-19-7415-1_24.

本文引用的文献

2
Fluorescence Monitoring of Peptide Transport Pathways into Large and Giant Vesicles by Supramolecular Host-Dye Reporter Pairs.
J Am Chem Soc. 2019 Dec 26;141(51):20137-20145. doi: 10.1021/jacs.9b09563. Epub 2019 Dec 2.
3
Biomimetic Carriers Based on Giant Membrane Vesicles for Targeted Drug Delivery and Photodynamic/Photothermal Synergistic Therapy.
ACS Appl Mater Interfaces. 2019 Nov 27;11(47):43811-43819. doi: 10.1021/acsami.9b11223. Epub 2019 Nov 18.
4
Artificial photosynthetic cell producing energy for protein synthesis.
Nat Commun. 2019 Mar 22;10(1):1325. doi: 10.1038/s41467-019-09147-4.
5
Budding and Division of Giant Vesicles Linked to Phospholipid Production.
Sci Rep. 2019 Jan 17;9(1):165. doi: 10.1038/s41598-018-36183-9.
6
Toward Experimental Evolution with Giant Vesicles.
Life (Basel). 2018 Oct 31;8(4):53. doi: 10.3390/life8040053.
7
Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells.
Trends Biotechnol. 2018 Sep;36(9):938-951. doi: 10.1016/j.tibtech.2018.03.008. Epub 2018 Apr 21.
9
De Novo Synthesis of Basal Bacterial Cell Division Proteins FtsZ, FtsA, and ZipA Inside Giant Vesicles.
ACS Synth Biol. 2018 Apr 20;7(4):953-961. doi: 10.1021/acssynbio.7b00350. Epub 2018 Mar 13.
10
Deformation Modes of Giant Unilamellar Vesicles Encapsulating Biopolymers.
ACS Synth Biol. 2018 Feb 16;7(2):739-747. doi: 10.1021/acssynbio.7b00460. Epub 2018 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验