Suppr超能文献

通过脉冲激光沉积制备用于稳定可见光光电化学水分解的TiO/FeO核壳纳米结构

Fabrication of a TiO/FeO Core/Shell Nanostructure by Pulse Laser Deposition toward Stable and Visible Light Photoelectrochemical Water Splitting.

作者信息

Lu Hao, Fang Song, Hu Jundie, Chen Bo, Zhao Run, Li Huishu, Li Chang Ming, Ye Jinhua

机构信息

Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215009, China.

Center for Soft Condensed Matter Physics & Interdisciplinary Research, College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006, China.

出版信息

ACS Omega. 2020 Jul 29;5(31):19861-19867. doi: 10.1021/acsomega.0c02838. eCollection 2020 Aug 11.

Abstract

Here, we report the fabrication of TiO/FeO core/shell heterojunction nanorod arrays by a pulsed laser deposition (PLD) process and their further use as photoelectrodes toward high-performance visible light photoelectrochemical (PEC) water splitting. The morphology, phase, and carrier conduction mechanism of plain TiO and TiO/FeO core/shell nanostructure were systematically investigated. PEC measurements show that the TiO/FeO core/shell nanostructure enhances photocurrent density by nearly 2 times than the plain ones, increases visible light absorption from 400 to 550 nm, raises the on/off separation rate, and delivers high stability with only a 3% decrease of current density for tests of even more than 14 days. This work provides a method to design an efficient nanostructure by combination of a facile hydrothermal process and high-quality PLD process to fabricate a clean surface and excellent crystallinity for charge separation, transfer, and collection toward enhanced PEC properties.

摘要

在此,我们报告了通过脉冲激光沉积(PLD)工艺制备TiO/FeO核壳异质结纳米棒阵列及其作为光电极用于高性能可见光光电化学(PEC)水分解的进一步应用。系统研究了纯TiO和TiO/FeO核壳纳米结构的形貌、相和载流子传导机制。PEC测量表明,TiO/FeO核壳纳米结构的光电流密度比纯TiO纳米结构提高了近2倍,在400至550nm范围内增加了可见光吸收,提高了开/关分离率,并且在超过14天的测试中具有高稳定性,电流密度仅下降3%。这项工作提供了一种通过简便的水热工艺和高质量的PLD工艺相结合来设计高效纳米结构的方法,以制备用于电荷分离、转移和收集的清洁表面和优异结晶度,从而增强PEC性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a852/7424710/78916fabc4ea/ao0c02838_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验