Alotaibi Abdullah M, Alzahrani Hussam M, Alosaimi Saud M, Alqahtani Abdullah M, Alhajji Mohammed A, Alotaibi Mohammed J
King Abdulaziz City for Science and Technology (KACST), Hydrogen Technologies Institute Saudi Arabia
RSC Adv. 2025 Sep 4;15(38):31931-31945. doi: 10.1039/d5ra05064b. eCollection 2025 Aug 29.
This study reports the enhanced photoelectrochemical (PEC) performance of TiO/α-FeO heterostructure films fabricated a sequential aerosol-assisted chemical vapour deposition (AACVD) of hematite at 450 °C, followed by atmospheric pressure CVD (APCVD) of anatase TiO with controlled thickness. Structural analyses (XRD, Raman, XPS) confirmed phase purity and oxidation states, while UV-vis spectroscopy revealed a narrowed bandgap and extended visible light absorption for the heterostructures compared to pristine films. The optimized TiO/α-FeO (8 min) photoanode achieved a photocurrent density of 1.75 mA cm at 1.23 V RHE in 1.0 M NaOH under AM 1.5G illumination, representing a ∼150% improvement over pure α-FeO. Incident-photon-to-current efficiency (IPCE) reached 7.47% at 420 nm, with enhanced performance sustained across the visible range. Transient absorption spectroscopy (TAS) revealed prolonged charge carrier lifetimes, indicating suppressed electron-hole recombination. The heterojunction design also improved stability, maintaining performance for over 16 h compared to 6.5 h for hematite alone. These synergistic effects including narrowed bandgap, efficient charge separation, and enhanced light harvesting highlight the novelty of combining AACVD and APCVD in fabricating TiO/α-FeO heterostructures as durable, high-performance photoanodes for scalable solar hydrogen generation.
本研究报告了通过在450°C下依次进行赤铁矿的气溶胶辅助化学气相沉积(AACVD),然后进行厚度可控的锐钛矿TiO2的常压化学气相沉积(APCVD)制备的TiO2/α-Fe2O3异质结构薄膜增强的光电化学(PEC)性能。结构分析(XRD、拉曼光谱、XPS)证实了相纯度和氧化态,而紫外-可见光谱显示与原始薄膜相比,异质结构的带隙变窄且可见光吸收范围扩大。优化后的TiO2/α-Fe2O3(8分钟)光阳极在AM 1.5G光照下,于1.0 M NaOH中在1.23 V RHE下实现了1.75 mA cm-2的光电流密度,比纯α-Fe2O3提高了约150%。在420 nm处,入射光子到电流效率(IPCE)达到7.47%,在可见光范围内性能持续增强。瞬态吸收光谱(TAS)显示电荷载流子寿命延长,表明电子-空穴复合受到抑制。异质结设计还提高了稳定性,与单独的赤铁矿6.5小时相比,性能保持超过16小时。这些协同效应包括带隙变窄、有效的电荷分离和增强的光捕获,突出了在制备TiO2/α-Fe2O3异质结构作为用于可扩展太阳能制氢的耐用、高性能光阳极时结合AACVD和APCVD的新颖性。